Abstract Explicit representation of finer‐scale processes can affect the sign and magnitude of the precipitation response to climate change between convection‐permitting and convection‐parameterizing models. We compare precipitation across two 15‐year epochs, a historical (HIST) and an end‐of‐21st‐century (EoC85), between a set of dynamically downscaled regional climate simulations at 3.75 km grid spacing (WRF) and bias‐corrected Community Earth System Model (CESM) output used to initialize and force the lateral boundaries of the downscaled simulations. In the historical climate, the downscaled simulations demonstrate less overall error than CESM when compared to observations for most portions of the conterminous United States. Both sets of simulations overestimate the incidence of environments with moderate to high precipitable water while CESM generally simulates rainfall that is too frequent but less intense. Within both sets of simulations, EoC85 rainfall amounts decrease in low‐moisture environments due to reduced rainfall frequency and intensity while rainfall amounts increase in high‐moisture environments as they occur more often. Overall, reductions in rainfall are stronger in WRF than in CESM, particularly during the warm season. This reduced drying in CESM is attributed to relatively higher rainfall frequency in environments with high concentrations of precipitable water and weak vertical motion. As a result, an increase in the occurrence of high moisture environments in EoC85 naturally favors more rainfall in CESM than WRF. Our results present an in‐depth examination of the characteristics of changes in overall accumulated precipitation and highlight an extra dimension of uncertainty when comparing convection‐permitting models against convection‐parameterizing models.
more »
« less
The Importance of Scale‐Dependent Groundwater Processes in Land‐Atmosphere Interactions Over the Central United States
Abstract This study explores the impacts of groundwater processes on the simulated land‐surface water balance and hydrometeorology. Observations are compared to multiscale Weather Research and Forecasting (WRF) simulations of three summer seasons: 2012, 2013, and 2014. Results show that a grid spacing of 3 km or smaller is necessary to capture small‐scale river and stream networks and associated shallow water tables, which supplies additional root‐zone water double that of simulations with 9‐km and 27‐km grid spacing and is critical to replenishing the depleted vegetation root zones and leads to 150 mm more evapotranspiration. Including groundwater processes in convection‐permitting models is effective to reduce: (1) 2‐m temperature warm biases from 5–6 to 2–3 °C and (2) the low precipitation bias by half. The additional groundwater supply to active soil flux in convection‐permitting simulations with groundwater for June‐August is nearly translated into the same amount of increased precipitation in the domain investigated.
more »
« less
- Award ID(s):
- 1739705
- PAR ID:
- 10367083
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 48
- Issue:
- 5
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The diurnal cycle of precipitation plays a crucial role in regulating Earth's water cycle, energy balance, and regional climate patterns. However, the diurnal precipitation across mainland Southeast Asia (MSEA) and the factors influencing its spatial variations are not fully understood. In this study, we investigated diurnal precipitation patterns in summertime (June–August) from 2002 to 2005 over MSEA using ground‐based observations, satellite products, the global ERA5 reanalysis, and high‐resolution simulations from the Weather Research and Forecasting (WRF) Model at 9‐ and 3‐km grid spacing forced by ERA5 hourly data on ∼0.25° grids. Various observation‐based data sets including GHCN‐Daily, Multi‐Source Weighted‐Ensemble Precipitation (MSWEP), Asian Precipitation ‐ Highly‐Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE), and Integrated Multi‐satellite Retrievals for Global Precipitation Measurement (IMERG) were used. In evaluating daily precipitation over MSEA, MSWEP, and APHRODITE data sets show similar patterns in precipitation amount, frequency, and intensity, while IMERG tends to produce higher amounts but with less frequency. ERA5 overestimates light precipitation compared to the other data sets. The WRF simulations generally produce heavier but less frequent light precipitation, with the 3‐km simulation producing less intense precipitation than the 9‐km simulation. A k‐means classification of IMERG data revealed five distinct spatial regimes with varying diurnal precipitation cycles. The WRF simulations closely match these regimes, capturing key diurnal cycles missed by ERA5 over mountainous regions and coastlines. Additionally, convective activities and near‐surface winds influence these cycles, with WRF simulations better representing coastal and mountain precipitation patterns than ERA5. High‐resolution WRF simulations, especially the 3‐km simulation, capture diurnal precipitation more accurately than ERA5, highlighting the importance of employing convection‐permitting models to simulate precipitation diurnal cycles over complex terrain.more » « less
-
Abstract Previous research has shown that 3-km horizontal grid spacing simulations depicting clusters of cells often change to showing linear structures when grid spacing is refined to 1 km. This increase in linear structures at finer horizontal grid spacings may be due simply to the resolving of stronger vertical motion along the leading edge of the MCS cold pool resulting in more continuous zones of convection in higher-resolution runs. However, prior work has suggested that the cold pools themselves are stronger with finer grid spacing, enhancing lift to grow linear morphologies faster. In the present study, Cloud Model 1 was used to simulate an array of MCSs with varying wind profiles and a constant thermodynamic profile (Weisman–Klemp analytic sounding) at both 1- and 3-km horizontal grid spacings and with 50 and 100 vertical levels. A line of seven randomly spaced warm bubbles was used to initiate convection. In 1-km Δxsimulations, gravity waves dominated in initiating new convection for growth into lines, and the ascent associated with them was much greater than in 3-km runs. Upscale growth into lines in 3-km Δxsimulations was driven more by ascent caused by the collision of convective cold pools.more » « less
-
Abstract The degree of improvement in convective representation in NWP with horizontal grid spacings finer than 3 km remains debatable. While some research suggests subkilometer horizontal grid spacing is needed to resolve details of convective structures, other studies have shown that decreasing grid spacing from 3–4 to 1–2 km offers little additional value for forecasts of deep convection. In addition, few studies exist to show how changes in vertical grid spacing impact thunderstorm forecasts, especially when horizontal grid spacing is simultaneously decreased. The present research investigates how warm-season central U.S. simulated MCS cold pools for 11 observed cases are impacted by decreasing horizontal grid spacing from 3 to 1 km, while increasing the vertical levels from 50 to 100 in WRF runs. The 3-km runs with 100 levels produced the deepest and most negatively buoyant cold pools compared to all other grid spacings since updrafts were more poorly resolved, resulting in a higher flux of rearward-advected frozen hydrometeors, whose melting processes were augmented by the finer vertical grid spacing, which better resolved the melting layer. However, the more predominant signal among all 11 cases was for more expansive cold pools in 1-km runs, where the stronger and more abundant updrafts focused along the MCS leading line supported a larger volume of concentrated rearward hydrometeor advection and resultant latent cooling at lower levels.more » « less
-
Sensitivity of large eddy simulations of tropical cyclone to sub-grid scale mixing parameterization.The surface wind structure and vertical turbulent transport processes in the eyewall of hurricane Isabel (2003) are investigated using six large-eddy simulations (LESs) with different horizontal grid spacing and three-dimensional (3D) sub-grid scale (SGS) turbulent mixing models and a convection permitting simulation that uses a coarser grid spacing and one-dimensional vertical turbulent mixing scheme. The mean radius-height distribution of storm tangential wind and radial flow, vertical velocity structure, and turbulent kinetic energy and momentum fluxes in the boundary layer generated by LESs are consistent with those derived from historical dropsonde composites, Doppler radar, and aircraft measurements. Unlike the convection permitting simulation that produces storm wind fields lacking small-scale disturbances, all LESs are able to produce sub-kilometer and kilometer scale eddy circulations in the eyewall. The inter-LES differences generally reduce with the decrease of model grid spacing. At 100-m horizontal grid spacing, the vertical momentum fluxes induced by the model-resolved eddies and the associated eddy exchange coefficients in the eyewall simulated by the LESs with different 3D SGS mixing schemes are fairly consistent. Although with uncertainties, the decomposition in terms of eddy scales suggests that sub-kilometer eddies are mainly responsible for the vertical turbulent transport within the boundary layer (~1 km depth following the conventional definition) whereas eddies greater than 1 km become the dominant contributors to the vertical momentum transport above the boundary layer in the eyewall. The strong dependence of vertical turbulent transport on eddy scales suggests that the vertical turbulent mixing parameterization in mesoscale simulations of tropical cyclones is ultimately a scale-sensitive problem.more » « less
An official website of the United States government
