skip to main content


Title: Decomposing the Precipitation Response to Climate Change in Convection Allowing Simulations Over the Conterminous United States
Abstract

Explicit representation of finer‐scale processes can affect the sign and magnitude of the precipitation response to climate change between convection‐permitting and convection‐parameterizing models. We compare precipitation across two 15‐year epochs, a historical (HIST) and an end‐of‐21st‐century (EoC85), between a set of dynamically downscaled regional climate simulations at 3.75 km grid spacing (WRF) and bias‐corrected Community Earth System Model (CESM) output used to initialize and force the lateral boundaries of the downscaled simulations. In the historical climate, the downscaled simulations demonstrate less overall error than CESM when compared to observations for most portions of the conterminous United States. Both sets of simulations overestimate the incidence of environments with moderate to high precipitable water while CESM generally simulates rainfall that is too frequent but less intense. Within both sets of simulations, EoC85 rainfall amounts decrease in low‐moisture environments due to reduced rainfall frequency and intensity while rainfall amounts increase in high‐moisture environments as they occur more often. Overall, reductions in rainfall are stronger in WRF than in CESM, particularly during the warm season. This reduced drying in CESM is attributed to relatively higher rainfall frequency in environments with high concentrations of precipitable water and weak vertical motion. As a result, an increase in the occurrence of high moisture environments in EoC85 naturally favors more rainfall in CESM than WRF. Our results present an in‐depth examination of the characteristics of changes in overall accumulated precipitation and highlight an extra dimension of uncertainty when comparing convection‐permitting models against convection‐parameterizing models.

 
more » « less
Award ID(s):
1637225
NSF-PAR ID:
10478222
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Earth and Space Science
Volume:
10
Issue:
12
ISSN:
2333-5084
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. This study examines the diurnal variation in precipitation over Hainan Island in the South China Sea using gauge observations from 1951 to 2012 and Climate Prediction Center MORPHing technique (CMORPH) satellite estimates from 2006 to 2015, as well as numerical simulations. The simulations are the first to use climatological mean initial and lateral boundary conditions to study the dynamic and thermodynamic processes (and the impacts of land–sea breeze circulations) that control the rainfall distribution and climatology. Precipitation is most significant from April to October and exhibits a strong diurnal cycle resulting from land–sea breeze circulations. More than 60% of the total annual precipitation over the island is attributable to the diurnal cycle with a significant monthly variability. The CMORPH and gauge datasets agree well, except that the CMORPH data underestimate precipitation and have a 1 h peak delay. The diurnal cycle of the rainfall and the related land– sea breeze circulations during May and June were well captured by convection-permitting numerical simulations with the Weather Research and Forecasting (WRF) model, which were initiated from a 10-year average ERA-Interim reanalysis. The simulations have a slight overestimation of rainfall amounts and a 1 h delay in peak rainfall time. The diurnal cycle of precipitation is driven by the occurrence of moist convection around noontime owing to low-level convergence associated with the sea-breeze circulations. The precipitation intensifies rapidly thereafter and peaks in the afternoon with the collisions of sea-breeze fronts from different sides of the island. Cold pools of the convective storms contribute to the inland propagation of the sea breeze. Generally, precipitation dissipates quickly in the evening due to the cooling and stabilization of the lower troposphere and decrease of boundary layer moisture. Interestingly, the rather high island orography is not a dominant factor in the diurnal variation in precipitation over the island. 
    more » « less
  2. Abstract. This study examines the diurnal variation in precipitation over Hainan Island in the South China Sea using gauge observations from 1951 to 2012 and Climate Prediction Center MORPHing technique (CMORPH) satellite estimates from 2006 to 2015, as well as numerical simulations. The simulations are the first to use climatological mean initial and lateral boundary conditions to study the dynamic and thermodynamic processes (and the impacts of land–sea breeze circulations) that control the rainfall distribution and climatology. Precipitation is most significant from April to October and exhibits a strong diurnal cycle resulting from land–sea breeze circulations. More than 60% of the total annual precipitation over the island is attributable to the diurnal cycle with a significant monthly variability. The CMORPH and gauge datasets agree well, except that the CMORPH data underestimate precipitation and have a 1h peak delay. The diurnal cycle of the rainfall and the related land–sea breeze circulations during May and June were well captured by convection-permitting numerical simulations with the Weather Research and Forecasting (WRF) model, which were initiated from a 10-year average ERA-Interim reanalysis. The simulations have a slight overestimation of rainfall amounts and a 1h delay in peak rainfall time. The diurnal cycle of precipitation is driven by the occurrence of moist convection around noontime owing to low-level convergence associated with the sea-breeze circulations. The precipitation intensifies rapidly thereafter and peaks in the afternoon with the collisions of sea-breeze fronts from different sides of the island. Cold pools of the convective storms contribute to the inland propagation of the sea breeze. Generally, precipitation dissipates quickly in the evening due to the cooling and stabilization of the lower troposphere and decrease of boundary layer moisture. Interestingly, the rather high island orography is not a dominant factor in the diurnal variation in precipitation over the island.

     
    more » « less
  3. Abstract

    This study presents a novel, high-resolution, dynamically downscaled dataset that will help inform regional and local stakeholders regarding potential impacts of climate change at the scales necessary to examine extreme mesoscale conditions. WRF-ARW version 4.1.2 was used in a convection-permitting configuration (horizontal grid spacing of 3.75 km; 51 vertical levels; data output interval of 15-min) as a regional climate model for a domain covering the contiguous US Initial and lateral boundary forcing for the regional climate model originates from a global climate model simulation by NCAR (Community Earth System Model) that participated in phase 5 of the Coupled Model Inter comparison Project. Herein, we use a version of these data that are regridded and bias corrected. Two 15-year downscaled simulation epochs were examined comprising of historical (HIST; 1990–2005) and potential future (FUTR; 2085–2100) climate using Representative Concentration Pathway (RCP) 8.5. HIST verification against independent observational data revealed that annual/seasonal/monthly temperature and precipitation (and their extremes) are replicated admirably in the downscaled HIST epoch, with the largest biases in temperature noted with daily maximum temperatures (too cold) and the largest biases in precipitation (too dry) across the southeast US during the boreal warm season. The simulations herein are improved compared to previous work, which is significant considering the differences in previous modeling approaches. Future projections of temperature under the RCP 8.5 scenario are consistent with previous works using various methods. Future precipitation projections suggest statistically significant decreases of precipitation across large segments of the southern Great Plains and Intermountain West, whereas significant increases were noted in the Tennessee/Ohio Valleys and across portions of the Pacific Northwest. Overall, these simulations serve as an additional datapoint/method to detect potential future changes in extreme meso-γ weather phenomena.

     
    more » « less
  4. Abstract. Simulations of the Indian summer monsoon by the cloud-permitting Weather Research and Forecasting (WRF) model at gray-zone resolution are described in this study, with a particular emphasis on the model ability to capture the monsoon intraseasonal oscillations (MISOs). Five boreal summers are simulated from 2007 to 2011 using the ERA-Interim reanalysis as the lateral boundary forcing data. Our experimental setup relies on a horizontal grid spacing of 9km to explicitly simulate deep convection without the use of cumulus parameterizations. When compared to simulations with coarser grid spacing (27km) and using a cumulus scheme, the 9km simulations reduce the biases in mean precipitation and produce more realistic low-frequency variability associated with MISOs. Results show that the model at the 9km gray-zone resolution captures the salient features of the summer monsoon. The spatial distributions and temporal evolutions of monsoon rainfall in the WRF simulations verify qualitatively well against observations from the Tropical Rainfall Measurement Mission (TRMM), with regional maxima located over Western Ghats, central India, Himalaya foothills, and the west coast of Myanmar. The onset, breaks, and withdrawal of the summer monsoon in each year are also realistically captured by the model. The MISO-phase composites of monsoon rainfall, low-level wind, and precipitable water anomalies in the simulations also agree qualitatively with the observations. Both the simulations and observations show a northeastward propagation of the MISOs, with the intensification and weakening of the Somali Jet over the Arabian Sea during the active and break phases of the Indian summer monsoon.

     
    more » « less
  5. While recent increases in heavy precipitation events in some midlatitude regions are consistent with climate model simulations, evidence of such increases in high latitudes is more tenuous, partly because of data limitations. The present study evaluates historical and future changes in extreme precipitation events in Alaska. Using the ERA5 reanalysis, station data, and output from two downscaled global climate models, we examine precipitation-driven flood events at five diverse locations in Alaska where major historical floods provide benchmarks: Fairbanks (August 1967), Seward (October 1986), Allakaket/Bettles (August 1994), Kivalina (August 2012), and Haines (December 2020). We place these precipitation events into a framework of historical trends and end-of-century (2065–2100) model projections. In all but one of the flood events, the amount of rainfall was the highest on record for the event duration, and precipitation events of this magnitude are generally projected by the models to remain infrequent. All of the cases had subtropical or tropical moisture sources. None of the locations show statistically significant historical trends in the magnitude of extreme precipitation events. However, the frequencies of heavy precipitation events are projected to increase at most of the locations. The frequency of events with 2 year and 5 year historical return intervals is projected to become more frequent, especially in the Interior, and in some cases increase to several times per year. Decreases are projected only for Seward along Alaska’s southern coast. 
    more » « less