skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Forests Mitigate Drought in an Agricultural Region of the Brazilian Amazon: Atmospheric Moisture Tracking to Identify Critical Source Areas
Abstract Tropical rainforests provide essential ecosystem services to agricultural areas, including moisture recycling. In the Amazon basin, drought frequency has increased in the late 20th and early 21st centuries, but the role of forests, ocean, and nonforested areas in causing or mitigating drought has not been determined. Using a precipitationshed moisture tracking framework, we quantify the contribution sources of evaporation to rainfall in Rondônia in the Brazilian Amazon. Forests account for ∼48% of annual rainfall on average, and more than half of the forest source is from protected areas (PAs). During droughts in 2005 and 2010, moisture supply decreased from oceans and nonforested areas, while supply from forests was stable and compensated for the decrease. Remote sensing and land surface models corroborate the relative insensitivity of forest evapotranspiration to droughts. Forests mitigate drought in the agricultural study region, providing an important ecosystem service that could be disrupted with further deforestation.  more » « less
Award ID(s):
1825046
PAR ID:
10367102
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
5
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Water is redistributed from evaporation sources to precipitation sinks through atmospheric moisture transport. In the Brazilian Amazon, the spatial and temporal variability of dry season moisture sources for key agricultural regions has not been investigated. This study investigates moisture sources for dry season rainfall in the state of Rondônia in Brazil, especially during drought years. Using a precipitationshed framework, we quantified the variability of moisture contributions to rainfall in the state of Rondônia (Brazilian Amazon) and the influence of synoptic circulation patterns. Ocean evaporation accounts for 58% of mean dry season precipitation while continental recycling contributed 42%. During drought years, although forests maintain or increase evapotranspiration, the moisture contribution of both ocean and forests to dry season rainfall decreases due to the synoptic circulation changes, reducing the moisture transport into Rondônia. 
    more » « less
  2. Abstract The contemporary fire regime of southern Amazonian forests has been dominated by interactions between droughts and sources of fire ignition associated with deforestation and slash-and-burn agriculture. Until recently, wildfires have been concentrated mostly on private properties, with protected areas functioning as large-scale firebreaks along the Amazon’s agricultural frontier. However, as the climate changes, protected forests have become increasingly flammable. Here, we have quantified forest degradation in the Território Indígena do Xingu (TIX), an iconic area of 2.8 million hectares where over 6000 people from 16 different ethnic Indigenous groups live across 100 villages. Our main hypothesis was that forest degradation, defined here as areas with lower canopy cover, inside the TIX is increasing due to pervasive sources of fire ignition, more frequent extreme drought events, and changing slash-and-burn agricultural practices. Between 2001 and 2020, nearly 189 000 hectares (∼7%) of the TIX became degraded by recurrent drought and fire events that were the main factors driving forest degradation, particularly in seasonally flooded forests. After three fire events, the probability of forest loss was higher in seasonally flooded areas (63%) compared to upland areas (41%). Given the same fire frequency, areas that have not suffered with extreme droughts showed a 24% lower probability of forest loss compared to areas that experienced three drought events. Distance from villages and human density also had a marked effect on forest cover loss, which was generally higher in areas close to the largest villages. In one of the most culturally diverse Indigenous lands of the Amazon, in a landscape highly threatened by deforestation, our findings demonstrate that climate change may have already exceeded the conditions to which the system has adapted. 
    more » « less
  3. null (Ed.)
    Abstract. Over the past decade, Brazil has experienced severe droughts across its territory, with important implications for soil moisture dynamics. Soil moisture variability has a direct impact on agriculture, water security and ecosystem services. Nevertheless, there is currently little information on how soil moisture across different biomes responds to drought. In this study, we used satellite soil moisture data from the European Space Agency, from 2009 to 2015, to analyze differences in soil moisture responses to drought for each biome of Brazil: Amazon, Atlantic Forest, Caatinga, Cerrado, Pampa and Pantanal. We found an overall soil moisture decline of −0.5 % yr−1 (p<0.01) at the national level. At the biome level, Caatinga presented the most severe soil moisture decline (−4.4 % yr−1), whereas the Atlantic Forest and Cerrado biomes showed no significant trend. The Amazon biome showed no trend but had a sharp reduction of soil moisture from 2013 to 2015. In contrast, the Pampa and Pantanal biomes presented a positive trend (1.6 % yr−1 and 4.3 % yr−1, respectively). These trends are consistent with vegetation productivity trends across each biome. This information provides insights into drought risk reduction and soil conservation activities to minimize the impact of drought in the most vulnerable biomes. Furthermore, improving our understanding of soil moisture trends during periods of drought is crucial to enhance the national drought early warning system and develop customized strategies for adaptation to climate change in each biome. 
    more » « less
  4. Droughts can exert a strong influence on the regional energy balance of the Amazon and Cerrado, as can the replacement of native vegetation by croplands. What remains unclear is how these two forcing factors interact and whether land cover changes fundamentally alter the sensitivity of the energy balance components to drought events. To fill this gap, we used remote sensing data to evaluate the impacts of drought on evapotranspiration (ET), land surface temperature (LST), and albedo on cultivated areas, savannas, and forests. Our results (for seasonal drought) indicate that increases in monthly dryness across Mato Grosso state (southern Amazonia and northern Cerrado) drive greater increases in LST and albedo in croplands than in forests. Furthermore, during the 2007 and 2010 droughts, croplands became hotter (0.1–0.8 °C) than savannas (0.3–0.6 °C) and forests (0.2–0.3 °C). However, forest ET was consistently higher than ET in all other land uses. This finding likely indicates that forests can access deeper soil water during droughts. Overall, our findings suggest that forest remnants can play a fundamental role in the mitigation of the negative impacts of extreme drought events, contributing to a higher ET and lower LST. 
    more » « less
  5. Abstract Rainforest in protected areas in the Brazilian Amazon is at risk due to increasing economic pressures and recent weakening of environmental agencies and legislation by the federal administration. This study examines the impacts of deforestation in protected areas on dry‐season precipitation in the Brazilian state of Rondônia located in the southwestern Brazilian Amazon. Regional‐climate model simulations indicate that clearing protected forests in Rondônia would result in substantial changes to the surface energy balance, including increased sensible and decreased latent heat flux. Consequent changes to low‐level wind circulation would enhance moisture flux convergence and convection over the newly deforested areas, leading to enhanced rainfall in those areas. However, deforestation of protected areas would decrease dry season rainfall up to 30% in the existing agricultural region, with potentially important negative impacts on agricultural production. Additionally, our results indicate that following deforestation, the newly degraded areas will experience warmer and drier afternoons that could place the remaining natural vegetation under vapor deficit stress. 
    more » « less