skip to main content


Title: Bamboo phenology and life cycle drive seasonal and long‐term functioning of Amazonian bamboo‐dominated forests
Abstract

Bamboo‐dominated forests (BDF) extend over large areas in the drought‐prone Southwestern Amazon, yet little is known about the dynamics of these ecosystems. Here, we investigate the hypothesis that bamboo modulates large‐scale ecosystem dynamics through competition with coexisting trees for water.

We examined spatio‐temporal patterns of remotely sensed metrics (Enhanced Vegetation Index [EVI], Normalized Difference Moisture Index [NDMI]) in >300 Landsat images as proxies for canopy leaf phenology and water content at two time scales: (1) a complete bamboo life cycle (~28 years), and (2) the seasonal cycle; and at two spatial scales: (a) comparing adjacent areas of BDF vs.Terra‐firmeforests (TFF) to investigate regional dynamics, and (b) comparing the vegetation classes of bamboo, trees in BDF, and trees in TFF to investigate the effects of bamboo on coexisting trees.

At the regional scale, BDF showed higher EVI (leaf area density) and lower NDMI (water content) than nearby TFF but these differences disappeared as bamboo died, suggesting a strong influence of bamboo life stage in the functioning of these forests. BDF seasonal cycle showed a bimodal EVI pattern as trees and bamboos had asynchronized leaf production peaks.

At the scale of vegetation classes, trees in BDF showed lower NDMI (i.e. water content) than trees in TFF except after bamboo mortality, indicating a release from competition with bamboo for water. Canopy water content of trees in BDF was also reduced during bamboo dry‐season greening (increased EVI ~ leaf production) due to increased water demands. Nevertheless, long‐term and seasonal phenology of trees in BDF did not differ from that of trees in TFF suggesting a potential selection for drought‐tolerant trees in BDF.

Synthesis. Bamboo‐dominated forests have received less attention than other Amazonian forests and their functional dynamics are commonly ignored or misinterpreted. Using remote sensing to characterize forest phenology and water content, we show the distinctive seasonal and long‐term dynamics of BDF and coexisting trees and the importance of bamboo competition for water in shaping this ecosystem. Our results suggest a potential selection for drought‐tolerant trees in BDF since they maintain the same EVI as trees in bamboo‐free forests but with lower water content. A better characterization of BDF and their cyclical dynamics is crucial for accurately interpreting Amazonian forests' responses to extreme climatic events such as high temperatures and droughts.

 
more » « less
NSF-PAR ID:
10453304
Author(s) / Creator(s):
 ;  ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Ecology
Volume:
109
Issue:
2
ISSN:
0022-0477
Page Range / eLocation ID:
p. 860-876
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    Seasonal dynamics in the vertical distribution of leaf area index (LAI) may impact the seasonality of forest productivity in Amazonian forests. However, until recently, fine‐scale observations critical to revealing ecological mechanisms underlying these changes have been lacking.

    To investigate fine‐scale variation in leaf area with seasonality and drought we conducted monthly ground‐based LiDAR surveys over 4 yr at an Amazon forest site. We analysed temporal changes in vertically structuredLAIalong axes of both canopy height and light environments.

    Upper canopyLAIincreased during the dry season, whereas lower canopyLAIdecreased. The low canopy decrease was driven by highly illuminated leaves of smaller trees in gaps. By contrast, understoryLAIincreased concurrently with the upper canopy. Hence, tree phenological strategies were stratified by height and light environments. Trends were amplified during a 2015–2016 severe El Niño drought.

    Leaf area low in the canopy exhibited behaviour consistent with water limitation. Leaf loss from short trees in high light during drought may be associated with strategies to tolerate limited access to deep soil water and stressful leaf environments. Vertically and environmentally structured phenological processes suggest a critical role of canopy structural heterogeneity in seasonal changes in Amazon ecosystem function.

     
    more » « less
  2. Abstract

    Despite their low contribution to forest carbon stocks, lianas (woody vines) play an important role in the carbon dynamics of tropical forests. As structural parasites, they hinder tree survival, growth and fecundity; hence, they negatively impact net ecosystem productivity and long‐term carbon sequestration.

    Competition (for water and light) drives various forest processes and depends on the local abundance of resources over time. However, evaluating the relative role of resource availability on the interactions between lianas and trees from empirical observations is particularly challenging. Previous approaches have used labour‐intensive and ecosystem‐scale manipulation experiments, which are infeasible in most situations.

    We propose to circumvent this challenge by evaluating the uncertainty of water and light capture processes of a process‐based vegetation model (ED2) including the liana growth form. We further developed the liana plant functional type in ED2 to mechanistically simulate water uptake and transport from roots to leaves, and start the model from prescribed initial conditions. We then used the PEcAn bioinformatics platform to constrain liana parameters and run uncertainty analyses.

    Baseline runs successfully reproduced ecosystem gas exchange fluxes (gross primary productivity and latent heat) and forest structural features (leaf area index, aboveground biomass) in two sites (Barro Colorado Island, Panama and Paracou, French Guiana) characterized by different rainfall regimes and levels of liana abundance.

    Model uncertainty analyses revealed that water limitation was the factor driving the competition between trees and lianas at the drier site (BCI), and during the relatively short dry season of the wetter site (Paracou). In young patches, light competition dominated in Paracou but alternated with water competition between the wet and the dry season on BCI according to the model simulations.

    The modelling workflow also identified key liana traits (photosynthetic quantum efficiency, stomatal regulation parameters, allometric relationships) and processes (water use, respiration, climbing) driving the model uncertainty. They should be considered as priorities for future data acquisition and model development to improve predictions of the carbon dynamics of liana‐infested forests.

    Synthesis. Competition for water plays a larger role in the interaction between lianas and trees than previously hypothesized, as demonstrated by simulations from a process‐based vegetation model.

     
    more » « less
  3. Summary

    Evergreen conifer forests are the most prevalent land cover type in North America. Seasonal changes in the color of evergreen forest canopies have been documented with near‐surface remote sensing, but the physiological mechanisms underlying these changes, and the implications for photosynthetic uptake, have not been fully elucidated.

    Here, we integrate on‐the‐ground phenological observations, leaf‐level physiological measurements, near surface hyperspectral remote sensing and digital camera imagery, tower‐based CO2flux measurements, and a predictive model to simulate seasonal canopy color dynamics.

    We show that seasonal changes in canopy color occur independently of new leaf production, but track changes in chlorophyll fluorescence, the photochemical reflectance index, and leaf pigmentation. We demonstrate that at winter‐dormant sites, seasonal changes in canopy color can be used to predict the onset of canopy‐level photosynthesis in spring, and its cessation in autumn. Finally, we parameterize a simple temperature‐based model to predict the seasonal cycle of canopy greenness, and we show that the model successfully simulates interannual variation in the timing of changes in canopy color.

    These results provide mechanistic insight into the factors driving seasonal changes in evergreen canopy color and provide opportunities to monitor and model seasonal variation in photosynthetic activity using color‐based vegetation indices.

     
    more » « less
  4. Abstract

    Climate change is stressing many forests around the globe, yet some tree species may be able to persist through acclimation and adaptation to new environmental conditions. The ability of a tree to acclimate during its lifetime through changes in physiology and functional traits, defined here as its acclimation potential, is not well known.

    We investigated the acclimation potential of trembling aspenPopulus tremuloidesand ponderosa pinePinus ponderosatrees by examining within‐species variation in drought response functional traits across both space and time, and how trait variation influences drought‐induced tree mortality. We measured xylem tension, morphological traits and physiological traits on mature trees in southwestern Colorado, USA across a climate gradient that spanned the distribution limits of each species and 3 years with large differences in climate.

    Trembling aspen functional traits showed high within‐species variation, and osmotic adjustment and carbon isotope discrimination were key determinants for increased drought tolerance in dry sites and in dry years. However, trembling aspen trees at low elevation were pushed past their drought tolerance limit during the severe 2018 drought year, as elevated mortality occurred. Higher specific leaf area during drought was correlated with higher percentages of canopy dieback the following year. Ponderosa pine functional traits showed less within‐species variation, though osmotic adjustment was also a key mechanism for increased drought tolerance. Remarkably, almost all traits varied more year‐to‐year than across elevation in both species.

    Our results shed light on the scope and limits of intraspecific trait variation for mediating drought responses in key southwestern US tree species and will help improve our ability to model and predict forest responses to climate change.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  5. Abstract

    Understanding the effects of intensification of Amazon basin hydrological cycling—manifest as increasingly frequent floods and droughts—on water and energy cycles of tropical forests is essential to meeting the challenge of predicting ecosystem responses to climate change, including forest “tipping points”. Here, we investigated the impacts of hydrological extremes on forest function using 12+ years of observations (between 2001–2020) of water and energy fluxes from eddy covariance, along with associated ecological dynamics from biometry, at the Tapajós National Forest. Measurements encompass the strong 2015–2016 El Niño drought and La Niña 2008–2009 wet events. We found that the forest responded strongly to El Niño‐Southern Oscillation (ENSO): Drought reduced water availability for evapotranspiration (ET) leading to large increases in sensible heat fluxes (H). PartitioningETby an approach that assumes transpiration (T) is proportional to photosynthesis, we found that water stress‐induced reductions in canopy conductance (Gs) droveTdeclines partly compensated by higher evaporation (E). By contrast, the abnormally wet La Niña period gave higherTand lowerE, with little change in seasonalET. Both El Niño‐Southern Oscillation (ENSO) events resulted in changes in forest structure, manifested as lower wet‐season leaf area index. However, only during El Niño 2015–2016, we observed a breakdown in the strong meteorological control of transpiration fluxes (via energy availability and atmospheric demand) because of slowing vegetation functions (via shutdown ofGsand significant leaf shedding). Drought‐reducedTandGs, higherHandE, amplified by feedbacks with higher temperatures and vapor pressure deficits, signaled that forest function had crossed a threshold, from which it recovered slowly, with delay, post‐drought. Identifying such tipping point onsets (beyond which future irreversible processes may occur) at local scale is crucial for predicting basin‐scale threshold‐crossing changes in forest energy and water cycling, leading to slow‐down in forest function, potentially resulting in Amazon forests shifting into alternate degraded states.

     
    more » « less