skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Probabilistic seismic source location and magnitude via inverse analysis of paleoliquefaction evidence
In regions of infrequent moderate-to-large earthquakes, historic earthquake catalogs are often insufficient to provide inputs to seismic-hazard analyses (i.e. fault locations and magnitude–frequency relations) or to inform ground-motion predictions for certain seismic sources. In these regions, analysis of relic coseismic evidence, such as paleoliquefaction, is commonly used to infer information about the seismic hazard. However, while paleoliquefaction studies have been performed widely, all existing analysis techniques require a priori assumptions about the causative earthquake’s location (i.e. rupture magnitude and ground motions can otherwise not be estimated). This may lead to inaccurate assumptions in some settings, and by corollary, erroneous results. Accordingly, this article proposes an inversion framework to probabilistically constrain seismic-source parameters from paleoliquefaction. Analyzing evidence at regional scale leads to (a) a geospatial likelihood surface that constrains the rupture location and (b) a probability distribution of the rupture magnitude, wherein source-location uncertainty is explicitly considered. Simulated paleoliquefaction studies are performed on earthquakes with known parameters. These examples demonstrate the framework’s potential, even in cases of limited field evidence, as well as important caveats and lessons for forward use. The proposed framework has the potential to provide new insights in enigmatic seismic zones worldwide.  more » « less
Award ID(s):
1751216
PAR ID:
10367132
Author(s) / Creator(s):
 ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Earthquake Spectra
Volume:
38
Issue:
2
ISSN:
8755-2930
Page Range / eLocation ID:
p. 1499-1528
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Physics-based ground motion simulations are a valuable tool for studying seismic sources with missing historical records, such as Cascadia Subduction Zone (CSZ) interface earthquakes. The last such event occurred in 1700 CE and is believed to be an M8-M9 rupture. The United States Geological Survey recently developed 30 physics-based simulations of a CSZ rupture to predict ground motions across the Pacific Northwest. Consideration of key modeling uncertainties across these simulations leads to estimates of ground motion intensity that vary by ~100% in some areas (e.g., Seattle). Paleoliquefaction, or soil liquefaction from past earthquakes, provides the best geologic evidence for constraining or "ground truthing" the intensity of past shaking, yet while paleoliquefaction has been documented throughout Cascadia, limited analyses have been performed to exploit this evidence. This study focuses on Kellogg Island, 2 mi south of Seattle, where liquefaction has been documented from several earthquakes, but not from the 1700 CE event. Therefore, using the CSZ simulations and in situ cone penetration test data, this study predicts the probability of surficial liquefaction manifestation at Kellogg Island during an M9 CSZ event. As part of this effort, velocity profiles are developed from multichannel analysis of surface waves, and non-linear site response analyses are used to propagate simulated motions to the surface. Results show a high probability of liquefaction near Kellogg Island for most simulations, whereas to date no evidence of 1700 CE liquefaction has been discovered at Kellogg Island, nor at any other location in the Puget Sound. The discrepancy between predictions and observations might indicate that the 1700 CE ground motions were less intense in Seattle than most predictions of M9 earthquakes indicate. Toward the goal of elucidating the expected impacts of future CSZ earthquakes, similar analyses are ongoing at additional sites across the region. 
    more » « less
  2. In the U.S. Pacific Northwest (PNW), the historic earthquake record is often insufficient to provide inputs to seismic-hazard analyses or to inform ground-motion predictions for certain seismic sources (e.g., the Cascadia Subduction Zone, CSZ). As a result, paleoseismic studies are commonly used to infer information about the seismic hazard. However, among the many forms of coseismic evidence, soil liquefaction provides the best, if not only, evidence from which the intensities of previous ground motions may be constrained. Accordingly, the overarching goal of this research is to use paleoliquefaction to elucidate previous ground motions in the PNW – both for CSZ events and others – and to further constrain the locations, magnitudes, and recurrence rates of such ruptures. Towards that goal, this paper: (i) reviews current paleoliquefaction inverse-analysis methods and their limited, prior applications in the PNW; (ii) compiles all PNW paleoliquefaction evidence from the literature into a GIS database, resulting in data from 185 study sites (e.g., feature locations, types, sizes, and ages); and (iii) develops maps – specific to the CSZ – that forecast paleoliquefaction for 30 different simulations of a CSZ event. These maps can be used to guide field explorations for new evidence, such that they are conducted efficiently and strategically, considering the apparent utility of evidence toward constraint of CSZ ground-motion models. Of additional utility, this process provides regional ground-motion predictions for physics-based simulations of an M9 event, to include expected site effects. Collectively, the maps of expected shaking intensity and liquefaction may be useful in downstream hazard modelling, regional loss estimation, policy development, and science communication. Ultimately, as more paleoliquefaction evidence is identified and studied, better constraint of regional ground-motion hazards will result. Version 2 (this posting) supersedes Version 1 (10.17603/ds2-jm19-2w09). Updates include GIS rasters that provide regional ground-motion intensity predictions (PGA, PGV) for 30 physics-based simulations of an M9 event, to include expected site effects 
    more » « less
  3. So far in this century, six very large–magnitude earthquakes ( M W ≥ 7.8) have ruptured separate portions of the subduction zone plate boundary of western South America along Ecuador, Peru, and Chile. Each source region had last experienced a very large earthquake from 74 to 261 y earlier. This history led to their designation in advance as seismic gaps with potential to host future large earthquakes. Deployments of geodetic and seismic monitoring instruments in several of the seismic gaps enhanced resolution of the subsequent faulting processes, revealing preevent patterns of geodetic slip deficit accumulation and heterogeneous coseismic slip on the megathrust fault. Localized regions of large slip, or asperities, appear to have influenced variability in how each source region ruptured relative to prior events, as repeated ruptures have had similar, but not identical slip distributions. We consider updated perspectives of seismic gaps, asperities, and geodetic locking to assess current very large earthquake hazard along the South American subduction zone, noting regions of particular concern in northern Ecuador and Colombia (1958/1906 rupture zone), southeastern Peru (southeasternmost 1868 rupture zone), north Chile (1877 rupture zone), and north-central Chile (1922 rupture zone) that have large geodetic slip deficit measurements and long intervals (from 64 to 154 y) since prior large events have struck those regions. Expanded geophysical measurements onshore and offshore in these seismic gaps may provide critical information about the strain cycle and fault stress buildup late in the seismic cycle in advance of the future great earthquakes that will eventually strike each region. 
    more » « less
  4. The US National Seismic Hazard Model (NSHM) was updated in 2023 for all 50 states using new science on seismicity, fault ruptures, ground motions, and probabilistic techniques to produce a standard of practice for public policy and other engineering applications (defined for return periods greater than ∼475 or less than ∼10,000 years). Changes in 2023 time-independent seismic hazard (both increases and decreases compared to previous NSHMs) are substantial because the new model considers more data and updated earthquake rupture forecasts and ground-motion components. In developing the 2023 model, we tried to apply best available or applicable science based on advice of co-authors, more than 50 reviewers, and hundreds of hazard scientists and end-users, who attended public workshops and provided technical inputs. The hazard assessment incorporates new catalogs, declustering algorithms, gridded seismicity models, magnitude-scaling equations, fault-based structural and deformation models, multi-fault earthquake rupture forecast models, semi-empirical and simulation-based ground-motion models, and site amplification models conditioned on shear-wave velocities of the upper 30 m of soil and deeper sedimentary basin structures. Seismic hazard calculations yield hazard curves at hundreds of thousands of sites, ground-motion maps, uniform-hazard response spectra, and disaggregations developed for pseudo-spectral accelerations at 21 oscillator periods and two peak parameters, Modified Mercalli Intensity, and 8 site classes required by building codes and other public policy applications. Tests show the new model is consistent with past ShakeMap intensity observations. Sensitivity and uncertainty assessments ensure resulting ground motions are compatible with known hazard information and highlight the range and causes of variability in ground motions. We produce several impact products including building seismic design criteria, intensity maps, planning scenarios, and engineering risk assessments showing the potential physical and social impacts. These applications provide a basis for assessing, planning, and mitigating the effects of future earthquakes. 
    more » « less
  5. Abstract The loss of life and economic consequences caused by several recent earthquakes demonstrate the importance of developing seismically safe building codes. The quantification of seismic hazard, which describes the likelihood of earthquake‐induced ground shaking at a site for a specific time period, is a key component of a building code, as it helps ensure that structures are designed to withstand the ground shaking caused by a potential earthquake. Geologic or geomorphic data represent important inputs to the most common seismic hazard model (probabilistic seismic hazard analyses, or PSHAs), as they can characterize the magnitudes, locations, and types of earthquakes that occur over long intervals (thousands of years). However, several recent earthquakes and a growing body of work challenge many of our previous assumptions about the characteristics of active faults and their rupture behavior, and these complexities can be challenging to accurately represent in PSHA. Here, we discuss several of the outstanding challenges surrounding geologic and geomorphic data sets frequently used in PSHA. The topics we discuss include how to utilize paleoseismic records in fault slip rate estimates, understanding and modeling earthquake recurrence and fault complexity, the development and use of fault‐scaling relationships, and characterizing enigmatic faults using topography. Making headway in these areas will likely require advancements in our understanding of the fundamental science behind processes such as fault triggering, complex rupture, earthquake clustering, and fault scaling. Progress in these topics will be important if we wish to accurately capture earthquake behavior in a variety of settings using PSHA in the future. 
    more » « less