Abstract On 29 July 2021, anMW8.2 thrust‐faulting earthquake ruptured offshore of the Alaska Peninsula within the rupture zone of the 1938MW8.2 earthquake. The spatiotemporal distribution of megathrust slip is resolved by jointly inverting regional and teleseismic broadband waveforms along with co‐seismic static and high‐rate GNSS displacements. The primarily unilateral rupture expanded northeastward, away from the rupture zone of the 22 July 2020MW7.8 Shumagin earthquake. Large slip extends along approximately 175 km, spanning about two third of the estimated 1938 aftershock zone, with well‐bounded depth from 20 to 40 km, and up to 8.6 m slip near the hypocenter. The rupture terminated in the eastern portion of the 1938 aftershock zone in a region of very large geodetic slip deficit where peak slip appears to have occurred in the 1938 rupture. The 2021 and 1938 events do not have similar slip distributions and do not indicate persistent asperities.
more »
« less
Updated concepts of seismic gaps and asperities to assess great earthquake hazard along South America
So far in this century, six very large–magnitude earthquakes ( M W ≥ 7.8) have ruptured separate portions of the subduction zone plate boundary of western South America along Ecuador, Peru, and Chile. Each source region had last experienced a very large earthquake from 74 to 261 y earlier. This history led to their designation in advance as seismic gaps with potential to host future large earthquakes. Deployments of geodetic and seismic monitoring instruments in several of the seismic gaps enhanced resolution of the subsequent faulting processes, revealing preevent patterns of geodetic slip deficit accumulation and heterogeneous coseismic slip on the megathrust fault. Localized regions of large slip, or asperities, appear to have influenced variability in how each source region ruptured relative to prior events, as repeated ruptures have had similar, but not identical slip distributions. We consider updated perspectives of seismic gaps, asperities, and geodetic locking to assess current very large earthquake hazard along the South American subduction zone, noting regions of particular concern in northern Ecuador and Colombia (1958/1906 rupture zone), southeastern Peru (southeasternmost 1868 rupture zone), north Chile (1877 rupture zone), and north-central Chile (1922 rupture zone) that have large geodetic slip deficit measurements and long intervals (from 64 to 154 y) since prior large events have struck those regions. Expanded geophysical measurements onshore and offshore in these seismic gaps may provide critical information about the strain cycle and fault stress buildup late in the seismic cycle in advance of the future great earthquakes that will eventually strike each region.
more »
« less
- Award ID(s):
- 1802364
- PAR ID:
- 10412025
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 119
- Issue:
- 51
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract From California to British Columbia, the Pacific Northwest coast bears an omnipresent earthquake and tsunami hazard from the Cascadia subduction zone. Multiple lines of evidence suggests that magnitude eight and greater megathrust earthquakes have occurred ‐ the most recent being 321 years ago (i.e., 1700 A.D.). Outstanding questions for the next great megathrust event include where it will initiate, what conditions are favorable for rupture to span the convergent margin, and how much slip may be expected. We develop the first 3‐D fully dynamic rupture simulations for the Cascadia subduction zone that are driven by fault stress, strength and friction to address these questions. The initial dynamic stress drop distribution in our simulations is constrained by geodetic coupling models, with segment locations taken from geologic analyses. We document the sensitivity of nucleation location and stress drop to the final seismic moment and coseismic subsidence amplitudes. We find that the final earthquake size strongly depends on the amount of slip deficit in the central Cascadia region, which is inferred to be creeping interseismically, for a given initiation location in southern or northern Cascadia. Several simulations are also presented here that can closely approximate recorded coastal subsidence from the 1700 A.D. event without invoking localized high‐stress asperities along the down‐dip locked region of the megathrust. These results can be used to inform earthquake and tsunami hazards for not only Cascadia, but other subduction zones that have limited seismic observations but a wealth of geodetic inference.more » « less
-
Abstract The heterogeneous seafloor topography of the Nazca Plate as it enters the Ecuador subduction zone provides an opportunity to document the influence of seafloor roughness on slip behavior and megathrust rupture. The 2016 Mw7.8 Pedernales Ecuador earthquake was followed by a rich and active postseismic sequence. An internationally coordinated rapid response effort installed a temporary seismic network to densify coastal stations of the permanent Ecuadorian national seismic network. A combination of 82 onshore short and intermediate period and broadband seismic stations and six ocean bottom seismometers recorded the postseismic Pedernales sequence for over a year after the mainshock. A robust earthquake catalog combined with calibrated relocations for a subset of magnitude ≥4 earthquakes shows pronounced spatial and temporal clustering. A range of slip behavior accommodates postseismic deformation including earthquakes, slow slip events, and earthquake swarms. Models of plate coupling and the consistency of earthquake clustering and slip behavior through multiple seismic cycles reveal a segmented subduction zone primarily controlled by subducted seafloor topography, accreted terranes, and inherited structure. The 2016 Pedernales mainshock triggered moderate to strong earthquakes (5 ≤ M ≤ 7) and earthquake swarms north of the mainshock rupture close to the epicenter of the 1906 Mw8.8 earthquake and in the segment of the subduction zone that ruptured in 1958 in a Mw7.7 earthquake.more » « less
-
Abstract Shallow slow-slip events (SSEs) contribute to strain release near the shallow portions of subduction interfaces and may contribute to promoting shallow subduction earthquakes. Recent efforts in offshore monitoring of shallow SSEs have provided evidence of possible interactions between shallow SSEs and megathrust earthquakes. In this study, we use a dynamic earthquake simulator that captures both quasi-static (for SSEs) and dynamic (for megathrust earthquakes) slip to explore their interactions and implications for seismic and tsunami hazards. We model slip behaviors of a shallow-dipping subduction interface on which two locally locked patches (asperities) with different strengths are embedded within a conditionally stable zone. We find that both SSEs and earthquakes can occur, and they interact over multiple earthquake cycles in the model. Dynamic ruptures can nucleate on the asperities and propagate into the surrounding conditionally stable zone at slow speeds, generating tsunami earthquakes. A clear correlation emerges between the size of an earthquake and SSE activities preceding it. Small earthquakes rupture only the low-strength asperity, whereas large earthquakes rupture both. Before a large earthquake, periodic SSEs occur around the high-strength asperity, gradually loading stress into its interior. The critically stressed high-strength asperity can be ruptured together with the low-strength one in the large earthquake, followed by a relatively quiet interseismic period with very few SSEs and then a small earthquake. An SSE may or may not directly lead to nucleation of an earthquake, depending on whether a nearby asperity is ready for spontaneously dynamic failure. In addition, because of different SSE activities, the coupling degree may change dramatically between different interseismic periods, suggesting that its estimate based on a short period of observation may be biased.more » « less
-
On February 6, 2023, two large earthquakes occurred near the Turkish town of Kahramanmaraş. The moment magnitude (Mw) 7.8 mainshock ruptured a 310 km-long segment of the left-lateral East Anatolian Fault, propagating through multiple releasing step-overs. The Mw 7.6 aftershock involved nearby left-lateral strike-slip faults of the East Anatolian Fault Zone, causing a 150 km-long rupture. We use remote-sensing observations to constrain the spatial distribution of coseismic slip for these two events and the February 20 Mw 6.4 aftershock near Antakya. Pixel tracking of optical and synthetic aperture radar data of the Sentinel-2 and Sentinel-1 satellites, respectively, provide near-field surface displacements. High-rate Global Navigation Satellite System data constrain each event separately. Coseismic slip extends from the surface to about 15 km depth with a shallow slip deficit. Most aftershocks cluster at major fault bends, surround the regions of high coseismic slip, or extend outward of the ruptured faults. For the mainshock, rupture propagation stopped southward at the diffuse termination of the East Anatolian fault and tapered off northward into the Pütürge segment, some 20 km south of the 2020 Mw 6.8 Elaziğ earthquake, highlighting a potential seismic gap. These events underscore the high seismic potential of immature fault systems.more » « less
An official website of the United States government

