Quantum noise imposes a fundamental limitation on the sensitivity of interferometric gravitational-wave detectors like LIGO, manifesting as shot noise and quantum radiation pressure noise. Here we present the first realization of frequency-dependent squeezing in full-scale gravitational-wave detectors, resulting in the reduction of both shot noise and quantum radiation pressure noise, with broadband detector enhancement from tens of Hz to several kHz. In the LIGO Hanford detector, squeezing reduced the detector noise amplitude by a factor of 1.6 (4.0 dB) near 1 kHz, while in the Livingston detector, the noise reduction was a factor of 1.9 (5.8dB). These improvements directly impact LIGO’s scientific output for high-frequency sources (e.g., binary neutron star post-merger physics). The improved low-frequency sensitivity, which boosted the detector range by 15–18 % with respect to no squeezing, corresponds to an increase in astrophysical detection rate of up to 65%. Frequency-dependent squeezing was enabled by the addition of a 300-meter long filter cavity to each detector as part of the LIGO A+ upgrade. 
                        more » 
                        « less   
                    
                            
                            Science-driven Tunable Design of Cosmic Explorer Detectors
                        
                    
    
            Abstract Ground-based gravitational-wave detectors like Cosmic Explorer (CE) can be tuned to improve their sensitivity at high or low frequencies by tuning the response of the signal extraction cavity. Enhanced sensitivity above 2 kHz enables measurements of the post-merger gravitational-wave spectrum from binary neutron star mergers, which depends critically on the unknown equation of state of hot, ultra-dense matter. Improved sensitivity below 500 Hz favors precision tests of extreme gravity with black hole ringdown signals and improves the detection prospects while facilitating an improved measurement of source properties for compact binary inspirals at cosmological distances. At intermediate frequencies, a more sensitive detector can better measure the tidal properties of neutron stars. We present and characterize the performance of tuned CE configurations that are designed to optimize detections across different astrophysical source populations. These tuning options give CE the flexibility to target a diverse set of science goals with the same detector infrastructure. We find that a 40 km CE detector outperforms a 20 km in all key science goals other than access to post-merger physics. This suggests that CE should include at least one 40 km facility. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10367137
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 931
- Issue:
- 1
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 22
- Size(s):
- Article No. 22
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The discovery of the electromagnetic counterpart to the binary neutron star (NS) merger GW170817 has opened the era of gravitational-wave multimessenger astronomy. Rapid identification of the optical/infrared kilonova enabled a precise localization of the source, which paved the way to deep multiwavelength follow-up and its myriad of related science results. Fully exploiting this new territory of exploration requires the acquisition of electromagnetic data from samples of NS mergers and other gravitational-wave sources. After GW170817, the frontier is now to map the diversity of kilonova properties and provide more stringent constraints on the Hubble constant, and enable new tests of fundamental physics. The Vera C. Rubin Observatory’s Legacy Survey of Space and Time can play a key role in this field in the 2020s, when an improved network of gravitational-wave detectors is expected to reach a sensitivity that will enable the discovery of a high rate of merger events involving NSs (∼tens per year) out to distances of several hundred megaparsecs. We design comprehensive target-of-opportunity observing strategies for follow-up of gravitational-wave triggers that will make the Rubin Observatory the premier instrument for discovery and early characterization of NS and other compact-object mergers, and yet unknown classes of gravitational-wave events.more » « less
- 
            ABSTRACT Parametric equations of state (EoSs) provide an important tool for systematically studying EoS effects in neutron star merger simulations. In this work, we perform a numerical validation of the M*-framework for parametrically calculating finite-temperature EoS tables. The framework, introduced by Raithel et al., provides a model for generically extending any cold, β-equilibrium EoS to finite temperatures and arbitrary electron fractions. In this work, we perform numerical evolutions of a binary neutron star merger with the SFHo finite-temperature EoS, as well as with the M*-approximation of this same EoS, where the approximation uses the zero-temperature, β-equilibrium slice of SFHo and replaces the finite-temperature and composition-dependent parts with the M*-model. We find that the approximate version of the EoS is able to accurately recreate the temperature and thermal pressure profiles of the binary neutron star remnant, when compared to the results found using the full version of SFHo. We additionally find that the merger dynamics and gravitational wave signals agree well between both cases, with differences of $$\lesssim 1\!-\!2\,{\textrm{per cent}}$$ introduced into the post-merger gravitational wave peak frequencies by the approximations of the EoS. We conclude that the M*-framework can be reliably used to probe neutron star merger properties in numerical simulations.more » « less
- 
            Abstract We examine the role of LIGO-India in facilitating multimessenger astronomy in the era of next-generation observatories. A network with two L-shaped Cosmic Explorer (CE) detectors and one triangular Einstein Telescope (ET) would precisely localize nearly the entire annual binary neutron star (NS) merger population up to a redshift of 0.5—over 10,000 events would be localized within 10 deg2, including approximately 150 events within 0.1 deg2. Luminosity distance would be measured to within 10% for over 9000 events and within 1% for ∼100 events. Surprisingly, replacing the 20 km CE detector with LIGO-India operating at A♯sensitivity (I♯) yields a nearly identical performance. The factor-of-5 shorter arms are offset by a fourfold increase in baseline relative to a second CE in the US, preserving localization accuracy, with over 9000 events within 10 deg2and ∼90 events within 0.1 deg2. This configuration detects ∼6000 events with luminosity distance uncertainties under 10%, including ∼50 with under 1%. Both networks provide early-warning detections up to 10 minutes before merger, with localization areas ≤10 deg2. WhileI♯enables excellent localization and early warnings, its shorter arms and narrower sensitivity band would limit its reach for other science goals, such as detecting Population III binary black hole mergers atz≳ 10, NS mergers atz∼ 2, or constraining cosmological parameters.more » « less
- 
            null (Ed.)The long-awaited detection of a gravitational wave from the merger of a binary neutron star in August 2017 (GW170817) marks the beginning of the new field of multi-messenger gravitational wave astronomy. By exploiting the extracted tidal deformations of the two neutron stars from the late inspiral phase of GW170817, it is now possible to constrain several global properties of the equation of state of neutron star matter. However, the most interesting part of the high density and temperature regime of the equation of state is solely imprinted in the post-merger gravitational wave emission from the remnant hypermassive/supramassive neutron star. This regime was not observed in GW170817, but will possibly be detected in forthcoming events within the current observing run of the LIGO/VIRGO collaboration. Numerous numerical-relativity simulations of merging neutron star binaries have been performed during the last decades, and the emitted gravitational wave profiles and the interior structure of the generated remnants have been analysed in detail. The consequences of a potential appearance of a hadron-quark phase transition in the interior region of the produced hypermassive neutron star and the evolution of its underlying matter in the phase diagram of quantum cromo dynamics will be in the focus of this article. It will be shown that the different density/temperature regions of the equation of state can be severely constrained by a measurement of the spectral properties of the emitted post-merger gravitational wave signal from a future binary compact star merger event.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
