Future ground-based gravitational-wave detectors are slated to detect black hole and neutron star collisions from the entire stellar history of the universe. To achieve the designed detector sensitivities, frequency noise from the laser source must be reduced below the level achieved in current Advanced LIGO detectors. This paper reviews the laser frequency noise suppression scheme in Advanced LIGO, and quantifies the noise coupling to the gravitational-wave readout. The laser frequency noise incident on the current Advanced LIGO detectors is
- Award ID(s):
- 1912598
- PAR ID:
- 10435873
- Date Published:
- Journal Name:
- Physical review X
- ISSN:
- 2160-3308
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
at 1~kHz. Future detectors will require even lower incident frequency noise levels to ensure this technical noise source does not limit sensitivity. The frequency noise requirement for a gravitational wave detector with arm lengths of 40~km is estimated to be . To reach this goal a new frequency noise suppression scheme is proposed, utilizing two input mode cleaner cavities, and the limits of this scheme are explored. Using this scheme the frequency noise requirement is met, even in pessimistic noise coupling scenarios. -
Optical losses degrade the sensitivity of laser interferometric instruments. They reduce the number of signal photons and introduce technical noise associated with diffuse light. In quantum-enhanced metrology, they break the entanglement between correlated photons. Such decoherence is one of the primary obstacles in achieving high levels of quantum noise reduction in precision metrology. In this work, we compare direct measurements of cavity and mirror losses in the Caltech 40 m gravitational-wave detector prototype interferometer with numerical estimates obtained from semi-analytic intra-cavity wavefront simulations using mirror surface profile maps. We show a unified approach to estimating the total loss in optical cavities (such as the LIGO gravitational detectors) that will lead towards the engineering of systems with minimum decoherence for quantum-enhanced precision metrology.
-
null (Ed.)Noise due to scattered light has been a frequent disturbance in the advanced LIGO gravitational wave detectors, hindering the detection of gravitational waves. The non stationary scatter noise caused by low frequency motion can be recognized as arches in the time-frequency plane of the gravitational wave channel. In this paper, we characterize the scattering noise for LIGO and Virgo's third observing run O3 from April, 2019 to March, 2020. We find at least two different populations of scattering noise and we investigate the multiple origins of one of them as well as its mitigation. We find that relative motion between two specific surfaces is strongly correlated with the presence of scattered light and we implement a technique to reduce this motion. We also present an algorithm using a witness channel to identify the times this noise can be present in the detector.more » « less
-
Abstract The quantum uncertainty of laser light limits the sensitivity of gravitational-wave observatories. Over the past 30 years, techniques for squeezing the quantum uncertainty, as well as for enhancing gravitational-wave signals with optical resonators have been invented. Resonators, however, have finite linewidths, and the high signal frequencies that are produced during the highly scientifically interesting ring-down of astrophysical compact-binary mergers still cannot be resolved. Here, we propose a purely optical approach for expanding the detection bandwidth. It uses quantum uncertainty squeezing inside one of the optical resonators, compensating for the finite resonators’ linewidths while keeping the low-frequency sensitivity unchanged. This quantum expander is intended to enhance the sensitivity of future gravitational-wave detectors, and we suggest the use of this new tool in other cavity-enhanced metrological experiments.
-
The detectable component of gravitational waves, known as the oscillatory waveform, is predicted to have a smaller, lower frequency counterpart called the memory: a permanent warping of space-time. The memory component is low-frequency (below the usual LIGO frequency band starting at 20 Hz), and low amplitude. Low frequency noise sources on earth make it difficult for ground based detectors to reach the SNR (signal to noise ratio) needed to detect this component. We use Bayesian parameter estimation on simulated events with future detector sensitivities, to determine the detector noise spectrum, event masses, and detected SNR required to detect gravitational wave memory.more » « less