skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Partitioned hybrid learning of Bayesian network structures
Abstract We develop a novel hybrid method for Bayesian network structure learning called partitioned hybrid greedy search (pHGS), composed of three distinct yet compatible new algorithms: Partitioned PC (pPC) accelerates skeleton learning via a divide-and-conquer strategy,p-value adjacency thresholding (PATH) effectively accomplishes parameter tuning with a single execution, and hybrid greedy initialization (HGI) maximally utilizes constraint-based information to obtain a high-scoring and well-performing initial graph for greedy search. We establish structure learning consistency of our algorithms in the large-sample limit, and empirically validate our methods individually and collectively through extensive numerical comparisons. The combined merits of pPC and PATH achieve significant computational reductions compared to the PC algorithm without sacrificing the accuracy of estimated structures, and our generally applicable HGI strategy reliably improves the estimation structural accuracy of popular hybrid algorithms with negligible additional computational expense. Our empirical results demonstrate the competitive empirical performance of pHGS against many state-of-the-art structure learning algorithms.  more » « less
Award ID(s):
1952929
PAR ID:
10367140
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Machine Learning
Volume:
111
Issue:
5
ISSN:
0885-6125
Page Range / eLocation ID:
p. 1695-1738
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A bounded cost path planning method is developed for underwater vehicles assisted by a data-driven flow modeling method. The modeled flow field is partitioned as a set of cells of piece-wise constant flow speed. A flow partition algorithm and a parameter estimation algorithm are proposed to learn the flow field structure and parameters with justified convergence. A bounded cost path planning algorithm is developed taking advantage of the partitioned flow model. An extended potential search method is proposed to determine the sequence of partitions that the optimal path crosses. The optimal path within each partition is then determined by solving a constrained optimization problem. Theoretical justification is provided for the proposed extended potential search method generating the optimal solution. The path planned has the highest probability to satisfy the bounded cost constraint. The performance of the algorithms is demonstrated with experimental and simulation results, which show that the proposed method is more computationally efficient than some of the existing methods. 
    more » « less
  2. Peng, Jie (Ed.)
    Outcome labeling ambiguity and subjectivity are ubiquitous in real-world datasets. While practitioners commonly combine ambiguous outcome labels for all data points (instances) in an ad hoc way to improve the accuracy of multi-class classification, there lacks a principled approach to guide the label combination for all data points by any optimality criterion. To address this problem, we propose the information-theoretic classification accuracy (ITCA), a criterion that balances the trade-off between prediction accuracy (how well do predicted labels agree with actual labels) and classification resolution (how many labels are predictable), to guide practitioners on how to combine ambiguous outcome labels. To find the optimal label combination indicated by ITCA, we propose two search strategies: greedy search and breadth-first search. Notably, ITCA and the two search strategies are adaptive to all machine-learning classification algorithms. Coupled with a classification algorithm and a search strategy, ITCA has two uses: improving prediction accuracy and identifying ambiguous labels. We first verify that ITCA achieves high accuracy with both search strategies in finding the correct label combinations on synthetic and real data. Then we demonstrate the effectiveness of ITCA in diverse applications, including medical prognosis, cancer survival prediction, user demographics prediction, and cell type classification. We also provide theoretical insights into ITCA by studying the oracle and the linear discriminant analysis classification algorithms. Python package itca (available at https://github.com/JSB-UCLA/ITCA) implements ITCA and the search strategies. 
    more » « less
  3. A current challenge for data management systems is to support the construction and maintenance of machine learning models over data that is large, multi-dimensional, and evolving. While systems that could support these tasks are emerging, the need to scale to distributed, streaming data requires new models and algorithms. In this setting, as well as computational scalability and model accuracy, we also need to minimize the amount of communication between distributed processors, which is the chief component of latency. We study Bayesian Networks, the workhorse of graphical models, and present a communication-efficient method for continuously learning and maintaining a Bayesian network model over data that is arriving as a distributed stream partitioned across multiple processors. We show a strategy for maintaining model parameters that leads to an exponential reduction in communication when compared with baseline approaches to maintain the exact MLE (maximum likelihood estimation). Meanwhile, our strategy provides similar prediction errors for the target distribution and for classification tasks. 
    more » « less
  4. Templated graphical models (TGMs) encode model structure using rules that capture recurring relationships between multiple random variables. While the rules in TGMs are interpretable, it is not clear how they can be used to generate explanations for the individual predictions of the model. Further, learning these rules from data comes with high computational costs: it typically requires an expensive combinatorial search over the space of rules and repeated optimization over rule weights. In this work, we propose a new structure learning algorithm, Explainable Structured Model Search (ESMS), that learns a templated graphical model and an explanation framework for its predictions. ESMS uses a novel search procedure to efficiently search the space of models and discover models that trade-off predictive accuracy and explainability. We introduce the notion of relational stability and prove that our proposed explanation framework is stable. Further, our proposed piecewise pseudolikelihood (PPLL) objective does not require re-optimizing the rule weights across models during each iteration of the search. In our empirical evaluation on three realworld datasets, we show that our proposed approach not only discovers models that are explainable, but also significantly outperforms existing state-out-the-art structure learning approaches. 
    more » « less
  5. Maximum Inner Product Search (MIPS) is an important task in many machine learning applications such as the prediction phase of low-rank matrix factorization models and deep learning models. Recently, there has been substantial research on how to perform MIPS in sub-linear time, but most of the existing work does not have the flexibility to control the trade-off between search efficiency and search quality. In this paper, we study the important problem of MIPS with a computational budget. By carefully studying the problem structure of MIPS, we develop a novel Greedy-MIPS algorithm, which can handle budgeted MIPS by design. While simple and intuitive, Greedy-MIPS yields surprisingly superior performance compared to state-of-the-art approaches. As a specific example, on a candidate set containing half a million vectors of dimension 200, Greedy-MIPS runs 200x faster than the naive approach while yielding search results with the top-5 precision greater than 75%. 
    more » « less