skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1952929

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We develop a novel hybrid method for Bayesian network structure learning called partitioned hybrid greedy search (pHGS), composed of three distinct yet compatible new algorithms: Partitioned PC (pPC) accelerates skeleton learning via a divide-and-conquer strategy,p-value adjacency thresholding (PATH) effectively accomplishes parameter tuning with a single execution, and hybrid greedy initialization (HGI) maximally utilizes constraint-based information to obtain a high-scoring and well-performing initial graph for greedy search. We establish structure learning consistency of our algorithms in the large-sample limit, and empirically validate our methods individually and collectively through extensive numerical comparisons. The combined merits of pPC and PATH achieve significant computational reductions compared to the PC algorithm without sacrificing the accuracy of estimated structures, and our generally applicable HGI strategy reliably improves the estimation structural accuracy of popular hybrid algorithms with negligible additional computational expense. Our empirical results demonstrate the competitive empirical performance of pHGS against many state-of-the-art structure learning algorithms. 
    more » « less
  2. The graphon (W-graph), including the stochastic block model as a special case, has been widely used in modeling and analyzing network data. Estimation of the graphon function has gained a lot of recent research interests. Most existing works focus on inference in the latent space of the model, while adopting simple maximum likelihood or Bayesian estimates for the graphon or connectivity parameters given the identified latent variables. In this work, we propose a hierarchical model and develop a novel empirical Bayes estimate of the connectivity matrix of a stochastic block model to approximate the graphon function. Based on our hierarchical model, we further introduce a new model selection criterion for choosing the number of communities. Numerical results on extensive simulations and two well-annotated social networks demonstrate the superiority of our approach in terms of parameter estimation and model selection. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)