skip to main content


Title: Larval transport pathways from three prominent sand lance habitats in the Gulf of Maine
Abstract

Northern sand lance (Ammodytes dubius) are among the most critically important forage fish throughout the Northeast US shelf. Despite their ecological importance, little is known about the larval transport of this species. Here, we use otolith microstructure analysis to estimate hatch and settlement dates of sand lance and then use these measurements to parametrize particle tracking experiments to assess the source–sink dynamics of three prominent sand lance habitats in the Gulf of Maine: Stellwagen Bank, the Great South Channel, and Georges Bank. Our results indicate the pelagic larval duration of northern sand lance lasts about 2 months (range: 50–84 days) and exhibit a broad range of hatch and settlement dates. Forward and backward particle tracking experiments show substantial interannual variability, yet suggest transport generally follows the north to south circulation in the Gulf of Maine region. We find that Stellwagen Bank is a major source of larvae for the Great South Channel, while the Great South Channel primarily serves as a sink for larvae from Stellwagen Bank and Georges Bank. Retention is likely the primary source of larvae on Georges Bank. Retention within both Georges Bank and Stellwagen Bank varies interannually in response to changes in local wind events, while the Great South Channel only exhibited notable retention in a single year. Collectively, these results provide a framework to assess population connectivity among these sand lance habitats, which informs the species' recruitment dynamics and impacts its vulnerability to exploitation.

 
more » « less
Award ID(s):
1655686
NSF-PAR ID:
10367155
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Fisheries Oceanography
Volume:
31
Issue:
3
ISSN:
1054-6006
Page Range / eLocation ID:
p. 333-352
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This dataset includes hatch and larval period for sand lance collected in 2019 and results from particle tracking runs of simulated sand lance larvae throughout the Northeast U.S. Shelf as part of Long-Term Ecological Research (NES-LTER). Release dates vary by region, corresponding to hatch and settlement dates of settling sand lance collected in 2019. Particles were depth-keeping throughout the upper 40 m to best replicate our understanding of the vertical distribution of sand lance larvae. Data were used to determine the average particle transport pathways from these sand lance habitats, including connectivity among the three hotspots, and spatial variability of connectivity within each hotspot. Further information can be found within the manuscript: Suca, J. J., Ji, R., Baumann, H., Pham, K., Silva, T. L., Wiley, D. N., Feng, Z., & Llopiz, J. K. (2022). Larval transport pathways from three prominent sand lance habitats in the Gulf of Maine. Fisheries Oceanography, 31( 3), 333-352. https://doi.org/10.1111/fog.12580 
    more » « less
  2. Abstract

    Sea urchins are voracious herbivores that influence the ecological structure and function of nearshore ecosystems throughout the world. Like many species that produce planktonic larvae, their recruitment is thought to be particularly sensitive to climatic fluctuations that directly or indirectly affect adult reproduction and larval transport and survival. Yet how climate alters sea urchin populations in space and time by modifying larval recruitment and year‐class strength on the time‐scales that regulate populations remains understudied. Using a, spatially replicated weekly‐biweekly data set spanning 27 yr and 1100 km of coastline, we characterized seasonal, interannual, and spatial patterns of larval settlement of the purple sea urchin (Strongylocentrotus purpuratus). We show that large spatial differences in temporal patterns of larval settlement were associated with different responses to fluctuations in ocean temperature and climate. Importantly, we found a strong correlation between larval settlement and regional year class strength suggesting that such temporal and spatial variation in settlement plays an important role in controlling population dynamics. These results provide strong evidence over extensive temporal and spatial domains that climatic fluctuations shape broad‐scale patterns of larval settlement and subsequent population structure of an important marine herbivore known to control the productivity, community state, and provisioning services of marine ecosystems.

     
    more » « less
  3. Abstract

    Many economic sectors rely on marine ecosystem services, and holistic management is necessary to evaluate trade-offs between sectors and facilitate sustainable use. Integrated ecosystem assessments (IEA) integrate system components so that managers can evaluate pathways to achieve desired goals. Indicators are a central element of IEAs and capture the status and trend of individual components and should be sensitive to changes in the system; however, most indicators are aggregated over space and time as annual values, potentially leading to incomplete or inaccurate inferences about system change. Here, we demonstrate the utility of spatially and temporally explicit ecological indicators by fitting multivariate spatio-temporal models to survey data from the northeast US Shelf Ecosystem, encompassing three distinct ecoregions: Georges Bank, Gulf of Maine, and mid-Atlantic Bight. We evaluate three case studies to explore how these models can help assess ecosystem performance relative to management objectives, such as to: (1) identify dominant modes of variation in zooplankton communities; (2) quantify components of system stability; and (3) assess the density-dependent condition of groundfish over time. Collectively, these three examples demonstrate multiple interesting processes, but particularly highlight the rapid zooplankton changes and associated changes in benthivore condition and stability in the Gulf of Maine. Attributing changes in ecosystem indicators to localized processes is difficult using conventional “regionally aggregated” indicators, so this example highlights the benefits of spatio-temporal methods for integrated ecosystem analysis in this and other regions.

     
    more » « less
  4. Abstract

    Dry, ephemeral, desert wetlands are major sources of windblown sediment, as well as repositories for diapausing stages (propagules) of aquatic invertebrates. Zooplankton propagules are of the same size range as sand and dust grains. They can be deflated and transported in windstorm events. This study provides evidence that dust storms aid in dispersal of microinvertebrate propagules via anemochory (aeolian transport).

    We monitored 91 windstorms at six sites in the southwestern U.S.A. over a 17‐year period. The primary study site was located in El Paso, Texas in the northern Chihuahuan Desert. Additional samples were collected from the Southern High Plains region. Dust carried by these events was collected and rehydrated to hatch viable propagules transported with it.

    Using samples collected over a 6‐year period, 21 m above the ground, which included 59 storm events, we tested the hypothesis that transport of propagules is correlated with storm intensity by monitoring meteorological conditions such as storm duration, wind direction, wind speed, and particulate matter (PM10; fine dust concentration). An air quality monitoring site located adjacent to the dust samplers provided quantitative hourly measurements.

    Rehydration results from all events showed that ciliates were found in 92% of the samples, rotifers in 81%, branchiopods in 29%, ostracods in 4%, nematodes in 13%, gastrotrichs in 16%, and tardigrades in 3%. Overall, four bdelloid and 11 monogonont rotifer species were identified from rehydrated windblown dust samples.

    Principal component analysis indicated gastrotrichs, branchiopods, nematodes, tardigrades, and monogonont rotifer occurrence positively correlated withPM10and dust event duration. Bdelloid rotifers were correlated with amount of sediment deposited. Non‐metric multidimensional scaling showed a significant relationship betweenPM10and occurrence of some taxa. Zero‐inflated, general linear models with mixed‐effects indicated significant relationships with bdelloid and nematode transport andPM10.

    Thus, windstorms with highPM10concentration and long duration are more likely to transport microinvertebrate diapausing stages in drylands.

     
    more » « less
  5. Abstract

    The diversity and distribution of marine species in eastern Australia is influenced by one of the world's strongest western boundary currents, the East Australia Current, which propels water and propagules poleward, a flow intensifying due to climate change.

    Population genetic structure of the asterinid sea starMeridiastra calcarwas investigated across its range in eastern Australia (12° of latitude, 2,500 km) from northern New South Wales to its poleward‐extending range in Tasmania at the southern edge influence of the East Australia Current.

    Population structure and connectivity ofM. calcarwere examined across six bioregions using six microsatellite loci (nuclear DNA) and the control region (mitochondrial DNA). The potential influence of the extent ofM. calcar's intertidal rock platform habitat was also assessed.

    Genetic structure analysis indicated that the Hawkesbury Shelf contained distinct genetic clusters, whereas the two sites in the Batemans Shelf differed from each other, with Jervis Bay Marine Park having just one genetic cluster. The Manning Shelf, Twofold Shelf, and Bruny bioregions all had similar genetic composition.

    Strong self‐seeding (68–98%) was indicated by microsatellite loci for all bioregions, with lower (0.3–6.5%) migration between bioregions. Poleward (New South Wales to Tasmania) migration was low except from the Manning Shelf (30%).

    Contemporary population connectivity and genetic structure ofM. calcarappear to be influenced by ocean currents, habitat distribution, and its short planktonic larval duration, which was a minimum of 12–14 days, depending on availability of a settlement cue.

    The dominance of unique genetic groups in the Hawkesbury bioregion shows the importance of this region forM. calcarand possibly a diversity of co‐distributed rock platform species. This highlights how important it is to have a large marine park in the Hawkesbury bioregion, which is presently lacking.

     
    more » « less