skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1655686

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Phytoplankton community size structure influences the production and fate of organic carbon in marine food webs and can undergo strong seasonal shifts in temperate regions. As part of the Northeast US Shelf (NES) Long‐Term Ecological Research program, we measured net primary production (NPP) rates and chlorophylla(Chla) concentrations in three phytoplankton size classes (< 5, 5–20, and > 20 μm) during winter and summer for 3 yr along a coastal‐to‐offshore transect. Mean depth‐integrated NPP was 37% higher in summer than winter, with limited cross‐shelf differences because of significant interannual variability. When averaged across the shelf, depth‐integrated NPP was dominated by the > 20 μm size class in winter and generated equally by the three size fractions in summer because of substantial contributions from cells > 20 μm at the Chlamaximum depth. Furthermore, the relationship between Chlaand NPP, in terms of relative contributions, varied by size class. Variations in this relationship have implications for models of primary productivity on the NES and beyond. In comparison to historical NPP data, we identified equivalent levels of winter NPP but observed a 25% decrease in summer NPP, suggesting a potential reduction in the seasonality of NPP on the NES. Together, our results highlight seasonal shifts in NPP rates of different phytoplankton size classes, with implications for food web structure and export production. These data emphasize the importance of quantifying size‐fractionated NPP over time to constrain its variability and better predict the fate of organic carbon in coastal systems under environmental change. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Abstract Along‐shelf wind stresses drive substantial along‐coast variations in sea level that result in significant along‐coast pressure gradients in the Middle Atlantic Bight (MAB) at time scales from days to years. Forty years of sea‐level data and reanalysis wind stresses are examined to determine the characteristics and dynamics of pressure gradients along the New England and Central MAB coasts. Along‐coast dynamic sea level (pressure) gradients often exceed 5 cm/100 km at daily time scales, 2 cm/100 km at monthly time scales and 0.2 cm/100 km at yearly time scales. Along‐shelf wind stresses account for more than 50% of the along‐coast pressure gradient variance at daily and monthly time scales and more than 25% at yearly time scales. Pressure gradients along the New England coast are primarily driven by local wind stresses along the New England shelf, while pressure gradients along the Central MAB shelf are driven by both local wind stresses along the Central MAB shelf and remote wind stresses along the New England shelf. A steady depth‐average model (Csanady, 1978,https://doi.org/10.1175/1520‐0485(1978)008<0047:tatw>2.0.co;2) accurately reproduces the wind‐driven along‐coast pressure gradients in both regions. The along‐coast pressure gradients typically oppose the local wind stress and, in the along‐shelf momentum balance, are 50%–80% of the along‐shelf wind stress over the inner shelf (water depth 15 m). 
    more » « less
  3. Abstract Measurements by the submersible ultraviolet nitrate analyzer (SUNA) can be used to derive high‐resolution in situ nitrate concentration with reliable accuracy and precision. Here we report our operational practices for SUNA deployment (including pre‐cruise instrument preparation and in‐cruise instrument maintenance) and detailed post‐cruise nitrate quality control procedures for SUNA integrated onto the CTD rosette. This work is based on experiences and findings from over 500 individual SUNA casts collected from 24 cruises (of which 14 cruises have been quality controlled so far) over the past 5 yr. After applying previously published spectral corrections for temperature, salinity, and pressure effects, we found residual biases in SUNA nitrate estimates compared to independently measured discrete samples. We further develop and assess a new two‐step procedure to remove remaining biases: (1) a general temperature‐dependent adjustment at low‐nitrate concentrations; and (2) a cruise‐specific full‐range bias correction. Our final quality‐controlled SUNA nitrate data achieve an accuracy of 0.34–0.78 μM, with a precision of 0.08–0.21 μM, at a vertical resolution of 1 m. Additional comparisons between the nitrate and density data confirm the high quality of the quality‐controlled SUNA data. Although applying spectral correction algorithms increases the accuracy and precision of the instrument‐output nitrate concentration, we emphasize that additional constraints of SUNA measurements against other independent sources (e.g., bottle data, temperature, and density) are irreplaceable to ensure the accuracy of final nitrate data. 
    more » « less
  4. Abstract In aquatic ecosystems, allochthonous nutrient transport to the euphotic zone is an important process that fuels new production. Here, we use high‐resolution physical and biogeochemical observations from five summers to estimate the mean vertical nitrate flux, and thus new production over the Northeast U.S. Shelf (NES). We find that the summertime nitrate field is primarily controlled by biological uptake and physical advection–diffusion processes, above and below the 1% light level depth, respectively. We estimate the vertical nitrate flux to be 8.2 ± 5.3 × 10−6 mmol N m−2 s−1for the mid‐shelf and 12.6 ± 8.6 × 10−6 mmol N m−2 s−1for the outer shelf. Furthermore, we show that the new production to total primary production ratio (i.e., the f‐ratio), consistently ranges between 10% and 15% under summer conditions on the NES. Two independent approaches—nitrate flux‐based new production and O2/Ar‐based net community production—corroborate the robustness of the f‐ratio estimation. Since ~ 85% of the total primary production is fueled by recycled nutrients over sufficiently broad spatial and temporal scales, less than 15% of the organic matter produced in summer is available for export from the NES euphotic zone. Our direct quantification of new production not only provides more precise details about key processes for NES food webs and ecosystem function, but also demonstrates the potential of this approach to be applied to other similar datasets to understand nutrient and carbon cycling in the global ocean. 
    more » « less
  5. Abstract Microzooplankton grazing is an essential parameter to predict the fate of organic matter production in planktonic food webs. To identify predictors of grazing, we leveraged a 6‐yr time series of coastal plankton growth and grazing rates across contrasting environmental conditions. Phytoplankton size–structure and trophic transfer were seasonally consistent with small phytoplankton cell dominance and low trophic transfer in summer, and large cell dominance and higher trophic transfer in winter. Departures from this pattern during two disruptive events revealed a critical link between phytoplankton size–structure and trophic transfer. An unusual summer bloom of large phytoplankton cells yielded high trophic transfer, and an atypical winter dominance of small phytoplankton resulted in seasonally atypical low trophic transfer. Environmental conditions during these events were neither seasonally atypical nor unique. Thus, phytoplankton size–structure rather than environmental conditions held a key‐role driving trophic transfer. Phytoplankton size–structure is easily measurable and could impart predictive power of food‐web structure and the fate of primary production in coastal ecosystems. 
    more » « less
  6. Abstract Analysis of 40 years of tide gauge data and reanalysis wind stresses from the Middle Atlantic Bight (MAB) indicate that along‐shelf wind stresses are a dominant driver of coastal dynamic sea level (sea level plus atmospheric pressure) variability at daily to yearly time scales. The sea‐level response to along‐shelf wind stress varies substantially along the coast and is accurately reproduced by a steady, barotropic, depth‐averaged model (Csanady, 1978,https://doi.org/10.1175/1520‐0485(1978)008<0047:tatw>2.0.co;2, Arrested Topographic Wave). The model indicates that the sea‐level response in the MAB depends primarily on the along‐shelf distribution of the along‐shelf wind stress, the Coriolis frequency, the bottom drag coefficient, and the cross‐shelf bottom slope. The along‐shelf wind stress varies along the MAB shelf due primarily to changes in the shelf orientation. The sea‐level response depends on both the local and upstream (in the sense of Kelvin wave propagation) along‐shelf wind stresses. Consequently, sea‐level variability at daily, monthly and yearly time scales along much of the central MAB coast is more strongly driven by upstream winds along the southern New England shelf than by local winds along the central MAB shelf. The residual coastal sea‐level variability, after removing the wind‐driven response and the trend, is roughly uniform along the MAB coast. The along‐coast average of the residual sea level at monthly and yearly time scales is caused by variations in shelf water densities primarily associated with the large annual cycle in water temperature and interannual variations in salinity. 
    more » « less
  7. Abstract Picophytoplankton are a ubiquitous component of marine plankton communities and are expected to be favored by global increases in seawater temperature and stratification associated with climate change. Eukaryotic and prokaryotic picophytoplankton have distinct ecology, and global models predict that the two groups will respond differently to future climate scenarios. At a nearshore observatory on the Northeast US Shelf, however, decades of year‐round monitoring have shown these two groups to be highly synchronized in their responses to environmental variability. To reconcile the differences between regional and global predictions for picophytoplankton dynamics, we here investigate the picophytoplankton community across the continental shelf gradient from the nearshore observatory to the continental slope. We analyze flow cytometry data from 22 research cruises, comparing the response of picoeukaryote andSynechococcuscommunities to environmental variability across time and space. We find that the mechanisms controlling picophytoplankton abundance differ across taxa, season, and distance from shore. Like the prokaryote,Synechococcus, picoeukaryote division rates are limited nearshore by low temperatures in winter and spring, and higher temperatures offshore lead to an earlier spring bloom. UnlikeSynechococcus, picoeukaryote concentration in summer decreases dramatically in offshore surface waters and exhibits deeper subsurface maxima. The offshore picoeukaryote community appears to be nutrient limited in the summer and subject to much greater loss rates thanSynechococcus. This work both produces and demonstrates the necessity of taxon‐ and site‐specific knowledge for accurately predicting the responses of picophytoplankton to ongoing environmental change. 
    more » « less
  8. Abstract Spatial population synchrony, defined as spatial covariation in population density fluctuations, exists across different temporal and spatial scales. Determining the degree of spatial synchrony is useful for inferring environmental drivers of population variability in the wake of climate change. In this study, we applied novel statistical methods to detect spatial synchrony patterns ofCalanus finmarchicuson the Northeast U.S. Shelf at multiple spatiotemporal scales using unevenly distributed data. Our results reveal thatC. finmarchicussubpopulations connected by advection are not necessarily in synchrony, indicating that the degree of synchrony is likely influenced by heterogeneity of local habitats. In addition, regionally synchronous environmental conditions (e.g., sea surface temperature) may not play as significant a role in influencing subregional population dynamics as was previously hypothesized. Overlooking the spatial heterogeneity of synchronous patterns at different time scales could lead to erroneous inferences of potential environmental drivers responsible forC. finmarchicusvariability. 
    more » « less
  9. Byron, Carrie (Ed.)
    Abstract The Atlantic sea scallop supports one of the most lucrative fisheries on the Northeast U.S. shelf. Understanding the interannual variability of sea scallop size structure and associated drivers is critically important for projecting the response of population dynamics to climate change and designing coherent fishery management strategies. In this study, we constructed time series of sea scallop size structures in three rotationally closed areas in the Mid-Atlantic Bight (MAB) and decomposed their total variances using the variance partitioning method. The results suggested that the interannual variances in sea scallop size structures were associated more with thermal stress in regions shallower than 60 m but more with fishing mortality in regions deeper than 60 m. The percentages of small (large) size groups increased (decreased) with elevated thermal stress and fishing pressure. We adopted a scope for growth model to build a mechanistic link between temperature and sea scallop size. Model results suggested a gradual decrease in maximum shell height and habitat contraction under warming. This study quantified the relative contributions of thermal stress and fishing mortality to the variance of scallop size structure and discussed the need for adaptive management plans to mitigate potential socioeconomic impacts caused by size structure changes. 
    more » « less
  10. Abstract Diatoms are among the most abundant phytoplankton that inhabit coastal ecosystems, forming large blooms that fuel coastal food webs. Although diatoms are often large and morphologically distinct, many are small or morphologically cryptic making it difficult to understand the temporal dynamics of whole diatom communities and the environmental factors that drive them. Here, we investigated diatom diversity and its environmental correlates using 6 yr of monthly surface water samples from the Narragansett Bay Plankton Time Series to investigate the seasonal and annual variability of diatom species occurrence. High‐throughput amplicon sequencing of filtered biomass yielded 658 diatom amplicon sequence variants (ASVs), of which 347 were identified to species. Of the 49 diatom genera in the sequencing dataset, 33% had never been observed in the time series using microscopy (1959–2014). We observed a weak quadratic relationship between ASV richness and chlorophyll‐aconcentrations, suggesting that richness decreases during blooms. There was a significant difference in diatom ASV richness by season and we identified distinct assemblages associated with different seasons. These assemblages were remarkably synchronous, exhibiting a sinewave‐like pattern, over 6 yr with an annual periodicity that correlated significantly with seasonal changes in temperature, light, and dissolved inorganic nitrogen. The annual cycle of diatom assemblages suggests stability in a key component of the estuarine food web known to influence ecosystem resilience and function. Deviations from the annual cycle of recurrence could be used to distinguish between changes in community structure driven by annual fluctuations in the environment and those driven by climate‐change stressors. 
    more » « less