We revisit the classical KZ problem – determination of the vertical force and implied total mass density distribution of the Milky Way disc – for a wide range of Galactocentric radius and vertical height using chemically selected thin and thick disc samples based on Apache Point Observatory Galactic Evolution Experiment spectroscopy combined with the Gaia astrometry. We derived the velocity dispersion profiles in Galactic cylindrical coordinates, and solved the Jeans equation for the two samples separately. The result is surprising that the total surface mass density as a function of vertical height as derived for these two chemically distinguished populations is different. The discrepancies are larger in the inner compared to the outer Galaxy, with the density calculated from thick disc being larger, independent of the Galactic radius. Furthermore, while there is an overall good agreement between the total mass density derived for the thick disc population and the standard halo model for vertical heights larger than 1 kpc, close to the mid-plane the mass density observed using the thick disc population is larger than that predicted from the standard halo model. We explore various implications of these discrepancies, and speculate their sources, including problems associated with the assumed density laws, velocity dispersion profiles, and the Galactic rotation curve, potential non-equilibrium of the Galactic disc, or a failure of the Navarro-Frenk-White (NFW) dark matter halo profile for the Milky Way. We conclude that the growing detail in hand on the chemodynamical distributions of Milky Way stars challenges traditional analytical treatments of the KZ problem.
The spatial distribution of mono-abundance populations (MAPs, selected in [Fe/H] and [Mg/Fe]) reflect the chemical and structural evolution in a galaxy and impose strong constraints on galaxy formation models. In this paper, we use APOGEE data to derive the intrinsic density distribution of MAPs in the Milky Way, after carefully considering the survey selection function. We find that a single exponential profile is not a sufficient description of the Milky Way’s disc. Both the individual MAPs and the integrated disc exhibit a broken radial density distribution; densities are relatively constant with radius in the inner Galaxy and rapidly decrease beyond the break radius. We fit the intrinsic density distribution as a function of radius and vertical height with a 2D density model that considers both a broken radial profile and radial variation of scale height (i.e. flaring). There is a large variety of structural parameters between different MAPs, indicative of strong structure evolution of the Milky Way. One surprising result is that high-α MAPs show the strongest flaring. The young, solar-abundance MAPs present the shortest scale height and least flaring, suggesting recent and ongoing star formation confined to the disc plane. Finally we derive the intrinsic density distribution and corresponding structural parameters of the chemically defined thin and thick discs. The chemical thick and thin discs have local surface mass densities of 5.62 ± 0.08 and 15.69 ± 0.32 M⊙pc−2, respectively, suggesting a massive thick disc with a local surface mass density ratio between thick to thin disc of 36 per cent.
more » « less- Award ID(s):
- 2009993
- PAR ID:
- 10367203
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 513
- Issue:
- 3
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- p. 4130-4151
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
ABSTRACT Stellar radial migration plays an important role in reshaping a galaxy’s structure and the radial distribution of stellar population properties. In this work, we revisit reported observational evidence for radial migration and quantify its strength using the age–[Fe/H] distribution of stars across the Milky Way with APOGEE data. We find a broken age–[Fe/H] relation in the Galactic disc at r > 6 kpc, with a more pronounced break at larger radii. To quantify the strength of radial migration, we assume stars born at each radius have a unique age and metallicity, and then decompose the metallicity distribution function (MDF) of mono-age young populations into different Gaussian components that originated from various birth radii at rbirth < 13 kpc. We find that, at ages of 2 and 3 Gyr, roughly half the stars were formed within 1 kpc of their present radius, and very few stars (<5 per cent) were formed more than 4 kpc away from their present radius. These results suggest limited short-distance radial migration and inefficient long-distance migration in the Milky Way during the last 3 Gyr. In the very outer disc beyond 15 kpc, the observed age–[Fe/H] distribution is consistent with the prediction of pure radial migration from smaller radii, suggesting a migration origin of the very outer disc. We also estimate intrinsic metallicity gradients at ages of 2 and 3 Gyr of −0.061 and −0.063 dex kpc−1, respectively.
-
ABSTRACT Due to the different environments in the Milky Way’s disc and halo, comparing wide binaries in the disc and halo is key to understanding wide binary formation and evolution. By using Gaia Early Data Release 3, we search for resolved wide binary companions in the H3 survey, a spectroscopic survey that has compiled ∼150 000 spectra for thick-disc and halo stars to date. We identify 800 high-confidence (a contamination rate of 4 per cent) wide binaries and two resolved triples, with binary separations mostly between 103 and 105 au and a lowest [Fe/H] of −2.7. Based on their Galactic kinematics, 33 of them are halo wide binaries, and most of those are associated with the accreted Gaia-Sausage-Enceladus galaxy. The wide binary fraction in the thick disc decreases toward the low metallicity end, consistent with the previous findings for the thin disc. Our key finding is that the halo wide binary fraction is consistent with the thick-disc stars at a fixed [Fe/H]. There is no significant dependence of the wide binary fraction on the α-captured abundance. Therefore, the wide binary fraction is mainly determined by the iron abundance, not their disc or halo origin nor the α-captured abundance. Our results suggest that the formation environments play a major role for the wide binary fraction, instead of other processes like radial migration that only apply to disc stars.
-
ABSTRACT Using a semi-analytical model of the evolution of the Milky Way, we show how secular evolution can create distinct overdensities in the phase space of various properties (e.g. age versus metallicity or abundance ratios versus age) corresponding to the thin and thick discs. In particular, we show how key properties of the Solar vicinity can be obtained by secular evolution, with no need for external or special events, like galaxy mergers or paucity in star formation. This concerns the long established double-branch behaviour of [alpha/Fe] versus metallicity and the recently found non-monotonic evolution of the stellar abundance gradient, evaluated at the birth radii of stars. We extend the discussion to other abundance ratios and we suggest a classification scheme, based on the nature of the corresponding yields (primary versus secondary or odd elements) and on the lifetimes of their sources (short-lived versus long-lived ones). The latter property is critical in determining the single- or double- branch behaviour of an elementary abundance ratio in the Solar neighbourhood. We underline the high diagnostic potential of this finding, which can help to separate clearly elements with sources evolving on different time-scales and help determining the site of e.g. the r-process(es). We define the ‘abundance distance’ between the thin and thick disc sequences as an important element for such a separation. We also show how the inside-out evolution of the Milky Way disc leads rather to a single-branch behaviour in other disc regions.more » « less
-
ABSTRACT Debris discs common around Sun-like stars carry dynamical imprints in their structure that are key to understanding the formation and evolution history of planetary systems. In this paper, we extend an algorithm (rave) originally developed to model edge-on discs to be applicable to discs at all inclinations. The updated algorithm allows for non-parametric recovery of the underlying (i.e. deconvolved) radial profile and vertical height of optically thin, axisymmetric discs imaged in either thermal emission or scattered light. Application to simulated images demonstrates that the de-projection and deconvolution performance allows for accurate recovery of features comparable to or larger than the beam or point spread function size, with realistic uncertainties that are independent of model assumptions. We apply our method to recover the radial profile and vertical height of a sample of 18 inclined debris discs observed with ALMA. Our recovered structures largely agree with those fitted with an alternative visibility-space de-projection and deconvolution method (frank). We find that for discs in the sample with a well-defined main belt, the belt radius, fractional width, and fractional outer edge width all tend to increase with age, but do not correlate in a clear or monotonic way with dust mass or stellar temperature. In contrast, the scale height aspect ratio does not strongly correlate with age, but broadly increases with stellar temperature. These trends could reflect a combination of intrinsic collisional evolution in the disc and the interaction of perturbing planets with the disc’s own gravity.