We derive a set of equations in conformal variables that describe a potential flow of an ideal two-dimensional inviscid fluid with free surface in a bounded domain. This formulation is free of numerical instabilities present in the equations for the surface elevation and potential derived in Dyachenko et al. ( Plasma Phys. Rep. vol. 22 (10), 1996, pp. 829–840) with some restrictions on analyticity relieved, which allows to treat a finite volume of fluid enclosed by a free-moving boundary. We illustrate with a comparison of numerical simulations of the Dirichlet ellipse, an exact solution for a zero surface tension fluid. We demonstrate how the oscillations of the free surface of a unit disc droplet may lead to breaking of one droplet into two when surface tension is present.
more »
« less
Recycling augmented Lagrangian preconditioner in an incompressible fluid solver
Abstract The paper discusses a reuse of matrix factorization as a building block in the Augmented Lagrangian (AL) and modified AL preconditioners for nonsymmetric saddle point linear algebraic systems. The strategy is applied to solve two‐dimensional incompressible fluid problems with efficiency rates independent of the Reynolds number. The solver is then tested to simulate motion of a surface fluid, an example of a two‐dimensional flow motivated by an interest in lateral fluidity of inextensible viscous membranes. Numerical examples include the Kelvin–Helmholtz instability problem posed on the sphere and on the torus. Some new eigenvalue estimates for the AL preconditioner are derived.
more »
« less
- PAR ID:
- 10367212
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Numerical Linear Algebra with Applications
- Volume:
- 29
- Issue:
- 2
- ISSN:
- 1070-5325
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In this article we formulate a stable computational nonlocal poromechanics model for dynamic analysis of saturated porous media. As a novelty, the stabilization formulation eliminates zero‐energy modes associated with the original multiphase correspondence constitutive models in the coupled nonlocal poromechanics model. The two‐phase stabilization scheme is formulated based on an energy method that incorporates inhomogeneous solid deformation and fluid flow. In this method, the nonlocal formulations of skeleton strain energy and fluid flow dissipation energy equate to their local formulations. The stable coupled nonlocal poromechanics model is solved for dynamic analysis by an implicit time integration scheme. As a new contribution, we validate the coupled stabilization formulation by comparing numerical results with analytical and finite element solutions for one‐dimensional and two‐dimensional dynamic problems in saturated porous media. Numerical examples of dynamic strain localization in saturated porous media are presented to demonstrate the efficacy of the stable coupled poromechanics framework for localized failure under dynamic loads.more » « less
-
Abstract The equation for a traveling wave on the boundary of a two‐dimensional droplet of an ideal fluid is derived by using the conformal variables technique for free surface waves. The free surface is subject only to the force of surface tension and the fluid flow is assumed to be potential. We use the canonical Hamiltonian variables discovered and map the lower complex plane to the interior of a fluid droplet conformally. The equations in this form have been originally discovered for infinitely deep water and later adapted to a bounded fluid domain.The new class of solutions satisfies a pseudodifferential equation similar to the Babenko equation for the Stokes wave. We illustrate with numerical solutions of the time‐dependent equations and observe the linear limit of traveling waves in this geometry.more » « less
-
Abstract We consider the finite element approximation of a coupled fluid‐structure interaction (FSI) system, which comprises a three‐dimensional (3D) Stokes flow and a two‐dimensional (2D) fourth‐order Euler–Bernoulli or Kirchhoff plate. The interaction of these parabolic and hyperbolic partial differential equations (PDE) occurs at the boundary interface which is assumed to be fixed. The vertical displacement of the plate dynamics evolves on the flat portion of the boundary where the coupling conditions are implemented via the matching velocities of the plate and fluid flow, as well as the Dirichlet boundary trace of the pressure. This pressure term also acts as a coupling agent, since it appears as a forcing term on the flat, elastic plate domain. Our main focus in this work is to generate some numerical results concerning the approximate solutions to the FSI model. For this, we propose a numerical algorithm that sequentially solves the fluid and plate subsystems through an effective decoupling approach. Numerical results of test problems are presented to illustrate the performance of the proposed method.more » « less
-
Microorganisms often move through viscoelastic environments, as biological fluids frequently have a rich microstructure owing to the presence of large polymeric molecules. Research on the effect of fluid elasticity on the swimming kinematics of these organisms has usually been focused on those that move via cilia or flagellum. Experimentally, Shen (X. N. Shen et al. , Phys. Rev. Lett. , 2011, 106 , 208101) reported that the nematode C. elegans , a model organism used to study undulatory motion, swims more slowly as the Deborah number describing the fluid's elasticity is increased. This phenomenon has not been thoroughly studied via a fully resolved three-dimensional simulation; moreover, the effect of fluid elasticity on the swimming speed of organisms moving via euglenoid movement, such as E. gracilis , is completely unknown. In this study, we discuss the simulation of the arbitrary motion of an undulating or pulsating swimmer that occupies finite volume in three dimensions, with the ability to specify any differential viscoelastic rheological model for the surrounding fluid. To accomplish this task, we use a modified version of the Immersed Finite Element Method presented in a previous paper by Guido and Saadat in 2018 (A. Saadat et al. , Phys. Rev. E , 2018, 98 , 063316). In particular, this version allows for the simulation of deformable swimmers such that they evolve through an arbitrary set of specified shapes via a conformation-driven force. From our analysis, we observe several key trends not found in previous two-dimensional simulations or theoretical analyses for C. elegans , as well as novel results for the amoeboid motion. In particular, we find that regions of high polymer stress concentrated at the head and tail of the swimming C. elegans are created by strong extensional flow fields and are associated with a decrease in swimming speed for a given swimming stroke. In contrast, in two dimensions these regions of stress are commonly found distributed along the entire body, likely owing to the lack of a third dimension for polymer relaxation. A comparison of swim speeds shows that the calculations in two-dimensional simulations result in an over-prediction of the speed reduction. We believe that our simulation tool accurately captures the swimming motion of the two aforementioned model swimmers and furthermore, allows for the simulation of multiple deformable swimmers, as well as more complex swimming geometries. This methodology opens many new possibilities for future studies of swimmers in viscoelastic fluids.more » « less
An official website of the United States government
