skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the dynamics of a free surface of an ideal fluid in a bounded domain in the presence of surface tension
We derive a set of equations in conformal variables that describe a potential flow of an ideal two-dimensional inviscid fluid with free surface in a bounded domain. This formulation is free of numerical instabilities present in the equations for the surface elevation and potential derived in Dyachenko et al.  ( Plasma Phys. Rep. vol. 22 (10), 1996, pp. 829–840) with some restrictions on analyticity relieved, which allows to treat a finite volume of fluid enclosed by a free-moving boundary. We illustrate with a comparison of numerical simulations of the Dirichlet ellipse, an exact solution for a zero surface tension fluid. We demonstrate how the oscillations of the free surface of a unit disc droplet may lead to breaking of one droplet into two when surface tension is present.  more » « less
Award ID(s):
1716822
PAR ID:
10107097
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
860
ISSN:
0022-1120
Page Range / eLocation ID:
408 to 418
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The equation for a traveling wave on the boundary of a two‐dimensional droplet of an ideal fluid is derived by using the conformal variables technique for free surface waves. The free surface is subject only to the force of surface tension and the fluid flow is assumed to be potential. We use the canonical Hamiltonian variables discovered and map the lower complex plane to the interior of a fluid droplet conformally. The equations in this form have been originally discovered for infinitely deep water and later adapted to a bounded fluid domain.The new class of solutions satisfies a pseudodifferential equation similar to the Babenko equation for the Stokes wave. We illustrate with numerical solutions of the time‐dependent equations and observe the linear limit of traveling waves in this geometry. 
    more » « less
  2. Inspired by the recent realization of a two-dimensional (2-D) chiral fluid as an active monolayer droplet moving atop a 3-D Stokesian fluid, we formulate mathematically its free-boundary dynamics. The surface droplet is described as a general 2-D linear, incompressible and isotropic fluid, having a viscous shear stress, an active chiral driving stress and a Hall stress allowed by the lack of time-reversal symmetry. The droplet interacts with itself through its driven internal mechanics and by driving flows in the underlying 3-D Stokes phase. We pose the dynamics as the solution to a singular integral–differential equation, over the droplet surface, using the mapping from surface stress to surface velocity for the 3-D Stokes equations. Specializing to the case of axisymmetric droplets, exact representations for the chiral surface flow are given in terms of solutions to a singular integral equation, solved using both analytical and numerical techniques. For a disc-shaped monolayer, we additionally employ a semi-analytical solution that hinges on an orthogonal basis of Bessel functions and allows for efficient computation of the monolayer velocity field, which ranges from a nearly solid-body rotation to a unidirectional edge current, depending on the subphase depth and the Saffman–Delbrück length. Except in the near-wall limit, these solutions have divergent surface shear stresses at droplet boundaries, a signature of systems with codimension-one domains embedded in a 3-D medium. We further investigate the effect of a Hall viscosity, which couples radial and transverse surface velocity components, on the dynamics of a closing cavity. Hall stresses are seen to drive inward radial motion, even in the absence of edge tension. 
    more » « less
  3. We consider the Euler equations for the potential flow of an ideal incompressible fluid of infinite depth with a free surface in two-dimensional geometry. Both gravity and surface tension forces are taken into account. A time-dependent conformal mapping is used which maps the lower complex half-plane of the auxiliary complex variable $$w$$ into the fluid’s area, with the real line of $$w$$ mapped into the free fluid’s surface. We reformulate the exact Eulerian dynamics through a non-canonical non-local Hamiltonian structure for a pair of the Hamiltonian variables. These two variables are the imaginary part of the conformal map and the fluid’s velocity potential, both evaluated at the fluid’s free surface. The corresponding Poisson bracket is non-degenerate, i.e. it does not have any Casimir invariant. Any two functionals of the conformal mapping commute with respect to the Poisson bracket. The new Hamiltonian structure is a generalization of the canonical Hamiltonian structure of Zakharov ( J. Appl. Mech. Tech. Phys. , vol. 9(2), 1968, pp. 190–194) which is valid only for solutions for which the natural surface parametrization is single-valued, i.e. each value of the horizontal coordinate corresponds only to a single point on the free surface. In contrast, the new non-canonical Hamiltonian equations are valid for arbitrary nonlinear solutions (including multiple-valued natural surface parametrization) and are equivalent to the Euler equations. We also consider a generalized hydrodynamics with the additional physical terms in the Hamiltonian beyond the Euler equations. In that case we identify powerful reductions that allow one to find general classes of particular solutions. 
    more » « less
  4. We derived equations and closed-form solutions of transit time for a viscous droplet squeezing through a small circular pore with a finite length at microscale under constant pressures. Our analyses were motivated by the vital processes of biological cells squeezing through small pores in blood vessels and sinusoids and droplets squeezing through pores in microfluidics. First, we derived ordinary differential equations (ODEs) of a droplet squeezing through a circular pore by combining Sampson flow, Poiseuille flow, and Young–Laplace equations and took into account the lubrication layer between the droplet and the pore wall. Second, for droplets wetting the wall with small surface tension, we derived the closed-form solutions of transit time. For droplets with finite surface tension, we solved the original ODEs numerically to predict the transit time. After validations against experiments and finite element simulations, we studied the effects of pressure, viscosity, pore/droplet dimensions, and surface tension on the transit time. We found that the transit time is inversely linearly proportional to pressure when the surface tension is low compared to the critical surface tension for preventing the droplet to pass and becomes nonlinear when it approaches the critical tension. Remarkably, we showed that when a fixed percentage of surface tension to critical tension is applied, the transit time is always inversely linearly proportional to pressure, and the dependence of transit time on surface tension is nonmonotonic. Our results provided a quick way of quantitative calculations of transit time for designing droplet microfluidics and understanding cells passing through constrictions. 
    more » « less
  5. We present a numerical study of spatially quasi-periodic travelling waves on the surface of an ideal fluid of infinite depth. This is a generalization of the classic Wilton ripple problem to the case when the ratio of wavenumbers satisfying the dispersion relation is irrational. We propose a conformal mapping formulation of the water wave equations that employs a quasi-periodic variant of the Hilbert transform to compute the normal velocity of the fluid from its velocity potential on the free surface. We develop a Fourier pseudo-spectral discretization of the travelling water wave equations in which one-dimensional quasi-periodic functions are represented by two-dimensional periodic functions on the torus. This leads to an overdetermined nonlinear least-squares problem that we solve using a variant of the Levenberg–Marquardt method. We investigate various properties of quasi-periodic travelling waves, including Fourier resonances, time evolution in conformal space on the torus, asymmetric wave crests, capillary wave patterns that change from one gravity wave trough to the next without repeating and the dependence of wave speed and surface tension on the amplitude parameters that describe a two-parameter family of waves. 
    more » « less