Abstract Antimicrobial resistance (AMR) is considered a critical threat to public health, and genomic/metagenomic investigations featuring high-throughput analysis of sequence data are increasingly common and important. We previously introduced MEGARes, a comprehensive AMR database with an acyclic hierarchical annotation structure that facilitates high-throughput computational analysis, as well as AMR++, a customized bioinformatic pipeline specifically designed to use MEGARes in high-throughput analysis for characterizing AMR genes (ARGs) in metagenomic sequence data. Here, we present MEGARes v3.0, a comprehensive database of published ARG sequences for antimicrobial drugs, biocides, and metals, and AMR++ v3.0, an update to our customized bioinformatic pipeline for high-throughput analysis of metagenomic data (available at MEGLab.org). Database annotations have been expanded to include information regarding specific genomic locations for single-nucleotide polymorphisms (SNPs) and insertions and/or deletions (indels) when required by specific ARGs for resistance expression, and the updated AMR++ pipeline uses this information to check for presence of resistance-conferring genetic variants in metagenomic sequenced reads. This new information encompasses 337 ARGs, whose resistance-conferring variants could not previously be confirmed in such a manner. In MEGARes 3.0, the nodes of the acyclic hierarchical ontology include 4 antimicrobial compound types, 59 resistance classes, 233 mechanisms and 1448 gene groups that classify the 8733 accessions.
more »
« less
AMR-meta: a k -mer and metafeature approach to classify antimicrobial resistance from high-throughput short-read metagenomics data
Abstract BackgroundAntimicrobial resistance (AMR) is a global health concern. High-throughput metagenomic sequencing of microbial samples enables profiling of AMR genes through comparison with curated AMR databases. However, the performance of current methods is often hampered by database incompleteness and the presence of homology/homoplasy with other non-AMR genes in sequenced samples. ResultsWe present AMR-meta, a database-free and alignment-free approach, based on k-mers, which combines algebraic matrix factorization into metafeatures with regularized regression. Metafeatures capture multi-level gene diversity across the main antibiotic classes. AMR-meta takes in reads from metagenomic shotgun sequencing and outputs predictions about whether those reads contribute to resistance against specific classes of antibiotics. In addition, AMR-meta uses an augmented training strategy that joins an AMR gene database with non-AMR genes (used as negative examples). We compare AMR-meta with AMRPlusPlus, DeepARG, and Meta-MARC, further testing their ensemble via a voting system. In cross-validation, AMR-meta has a median f-score of 0.7 (interquartile range, 0.2–0.9). On semi-synthetic metagenomic data—external test—on average AMR-meta yields a 1.3-fold hit rate increase over existing methods. In terms of run-time, AMR-meta is 3 times faster than DeepARG, 30 times faster than Meta-MARC, and as fast as AMRPlusPlus. Finally, we note that differences in AMR ontologies and observed variance of all tools in classification outputs call for further development on standardization of benchmarking data and protocols. ConclusionsAMR-meta is a fast, accurate classifier that exploits non-AMR negative sets to improve sensitivity and specificity. The differences in AMR ontologies and the high variance of all tools in classification outputs call for the deployment of standard benchmarking data and protocols, to fairly compare AMR prediction tools.
more »
« less
- Award ID(s):
- 2013998
- PAR ID:
- 10367213
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- GigaScience
- Volume:
- 11
- ISSN:
- 2047-217X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Antimicrobial resistance (AMR) is a growing threat to public health and farming at large. In clinical and veterinary practice, timely characterization of the antibiotic susceptibility profile of bacterial infections is a crucial step in optimizing treatment. High-throughput sequencing is a promising option for clinical point-of-care and ecological surveillance, opening the opportunity to develop genotyping-based AMR determination as a possibly faster alternative to phenotypic testing. In the present work, we compare the performance of state-of-the-art methods for detection of AMR using high-throughput sequencing data from clinical settings. We consider five computational approaches based on alignment (AMRPlusPlus), deep learning (DeepARG), k-mer genomic signatures (KARGA, ResFinder) or hidden Markov models (Meta-MARC). We use an extensive collection of 585 isolates with available AMR resistance profiles determined by phenotypic tests across nine antibiotic classes. We show how the prediction landscape of AMR classifiers is highly heterogeneous, with balanced accuracy varying from 0.40 to 0.92. Although some algorithms—ResFinder, KARGA and AMRPlusPlus—exhibit overall better balanced accuracy than others, the high per-AMR-class variance and related findings suggest that: (1) all algorithms might be subject to sampling bias both in data repositories used for training and experimental/clinical settings; and (2) a portion of clinical samples might contain uncharacterized AMR genes that the algorithms—mostly trained on known AMR genes—fail to generalize upon. These results lead us to formulate practical advice for software configuration and application, and give suggestions for future study designs to further develop AMR prediction tools from proof-of-concept to bedside.more » « less
-
null (Ed.)High-throughput sequencing is widely used for strain detection and characterization of antibiotic resistance in microbial metagenomic samples. Current analytical tools use curated antibiotic resistance gene (ARG) databases to classify individual sequencing reads or assembled contigs. However, identifying ARGs from raw read data can be time consuming (especially if assembly or alignment is required) and challenging, due to genome rearrangements and mutations. Here, we present the k-mer-based antibiotic gene resistance analyzer (KARGA), a multi-platform Java toolkit for identifying ARGs from metagenomic short read data. KARGA does not perform alignment; it uses an efficient double-lookup strategy, statistical filtering on false positives, and provides individual read classification as well as covering of the database resistome. On simulated data, KARGA’s antibiotic resistance class recall is 99.89% for error/mutation rates within 10%, and of 83.37% for error/mutation rates between 10% and 25%, while it is 99.92% on ARGs with rearrangements. On empirical data, KARGA provides higher hit score (≥1.5-fold) than AMRPlusPlus, DeepARG, and MetaMARC. KARGA has also faster runtimes than all other tools (2x faster than AMRPlusPlus, 7x than DeepARG, and over 100x than MetaMARC). KARGA is available under the MIT license at https://github.com/DataIntellSystLab/KARGA.more » « less
-
Abstract Background Metagenomic data can be used to profile high-importance genes within microbiomes. However, current metagenomic workflows produce data that suffer from low sensitivity and an inability to accurately reconstruct partial or full genomes, particularly those in low abundance. These limitations preclude colocalization analysis, i.e., characterizing the genomic context of genes and functions within a metagenomic sample. Genomic context is especially crucial for functions associated with horizontal gene transfer (HGT) via mobile genetic elements (MGEs), for example antimicrobial resistance (AMR). To overcome this current limitation of metagenomics, we present a method for comprehensive and accurate reconstruction of antimicrobial resistance genes (ARGs) and MGEs from metagenomic DNA, termed t arget- e nriched l ong-read seq uencing (TELSeq). Results Using technical replicates of diverse sample types, we compared TELSeq performance to that of non-enriched PacBio and short-read Illumina sequencing. TELSeq achieved much higher ARG recovery (>1,000-fold) and sensitivity than the other methods across diverse metagenomes, revealing an extensive resistome profile comprising many low-abundance ARGs, including some with public health importance. Using the long reads generated by TELSeq, we identified numerous MGEs and cargo genes flanking the low-abundance ARGs, indicating that these ARGs could be transferred across bacterial taxa via HGT. Conclusions TELSeq can provide a nuanced view of the genomic context of microbial resistomes and thus has wide-ranging applications in public, animal, and human health, as well as environmental surveillance and monitoring of AMR. Thus, this technique represents a fundamental advancement for microbiome research and application.more » « less
-
Abstract MotivationThe introduction of portable DNA sequencers such as the Oxford Nanopore Technologies MinION has enabled real-time and in the field DNA sequencing. However, in the field sequencing is actionable only when coupled with in the field DNA classification. This poses new challenges for metagenomic software since mobile deployments are typically in remote locations with limited network connectivity and without access to capable computing devices. ResultsWe propose new strategies to enable in the field metagenomic classification on mobile devices. We first introduce a programming model for expressing metagenomic classifiers that decomposes the classification process into well-defined and manageable abstractions. The model simplifies resource management in mobile setups and enables rapid prototyping of classification algorithms. Next, we introduce the compact string B-tree, a practical data structure for indexing text in external storage, and we demonstrate its viability as a strategy to deploy massive DNA databases on memory-constrained devices. Finally, we combine both solutions into Coriolis, a metagenomic classifier designed specifically to operate on lightweight mobile devices. Through experiments with actual MinION metagenomic reads and a portable supercomputer-on-a-chip, we show that compared with the state-of-the-art solutions Coriolis offers higher throughput and lower resource consumption without sacrificing quality of classification. Availability and implementationSource code and test data are available from http://score-group.org/?id=smarten.more » « less
An official website of the United States government
