skip to main content


Title: Target-enriched long-read sequencing (TELSeq) contextualizes antimicrobial resistance genes in metagenomes
Abstract Background Metagenomic data can be used to profile high-importance genes within microbiomes. However, current metagenomic workflows produce data that suffer from low sensitivity and an inability to accurately reconstruct partial or full genomes, particularly those in low abundance. These limitations preclude colocalization analysis, i.e., characterizing the genomic context of genes and functions within a metagenomic sample. Genomic context is especially crucial for functions associated with horizontal gene transfer (HGT) via mobile genetic elements (MGEs), for example antimicrobial resistance (AMR). To overcome this current limitation of metagenomics, we present a method for comprehensive and accurate reconstruction of antimicrobial resistance genes (ARGs) and MGEs from metagenomic DNA, termed t arget- e nriched l ong-read seq uencing (TELSeq). Results Using technical replicates of diverse sample types, we compared TELSeq performance to that of non-enriched PacBio and short-read Illumina sequencing. TELSeq achieved much higher ARG recovery (>1,000-fold) and sensitivity than the other methods across diverse metagenomes, revealing an extensive resistome profile comprising many low-abundance ARGs, including some with public health importance. Using the long reads generated by TELSeq, we identified numerous MGEs and cargo genes flanking the low-abundance ARGs, indicating that these ARGs could be transferred across bacterial taxa via HGT. Conclusions TELSeq can provide a nuanced view of the genomic context of microbial resistomes and thus has wide-ranging applications in public, animal, and human health, as well as environmental surveillance and monitoring of AMR. Thus, this technique represents a fundamental advancement for microbiome research and application.  more » « less
Award ID(s):
2013998 2118251
NSF-PAR ID:
10390384
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Microbiome
Volume:
10
Issue:
1
ISSN:
2049-2618
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Antimicrobial resistance (AMR) is considered a critical threat to public health, and genomic/metagenomic investigations featuring high-throughput analysis of sequence data are increasingly common and important. We previously introduced MEGARes, a comprehensive AMR database with an acyclic hierarchical annotation structure that facilitates high-throughput computational analysis, as well as AMR++, a customized bioinformatic pipeline specifically designed to use MEGARes in high-throughput analysis for characterizing AMR genes (ARGs) in metagenomic sequence data. Here, we present MEGARes v3.0, a comprehensive database of published ARG sequences for antimicrobial drugs, biocides, and metals, and AMR++ v3.0, an update to our customized bioinformatic pipeline for high-throughput analysis of metagenomic data (available at MEGLab.org). Database annotations have been expanded to include information regarding specific genomic locations for single-nucleotide polymorphisms (SNPs) and insertions and/or deletions (indels) when required by specific ARGs for resistance expression, and the updated AMR++ pipeline uses this information to check for presence of resistance-conferring genetic variants in metagenomic sequenced reads. This new information encompasses 337 ARGs, whose resistance-conferring variants could not previously be confirmed in such a manner. In MEGARes 3.0, the nodes of the acyclic hierarchical ontology include 4 antimicrobial compound types, 59 resistance classes, 233 mechanisms and 1448 gene groups that classify the 8733 accessions. 
    more » « less
  2. ABSTRACT Little is known about the public health risks associated with natural creek sediments that are affected by runoff and fecal pollution from agricultural and livestock practices. For instance, the persistence of foodborne pathogens such as Shiga toxin-producing Escherichia coli (STEC) originating from these practices remains poorly quantified. Towards closing these knowledge gaps, the water-sediment interface of two creeks in the Salinas River Valley of California was sampled over a 9-month period using metagenomics and traditional culture-based tests for STEC. Our results revealed that these sediment communities are extremely diverse and have functional and taxonomic diversity comparable to that observed in soils. With our sequencing effort (∼4 Gbp per library), we were unable to detect any pathogenic E. coli in the metagenomes of 11 samples that had tested positive using culture-based methods, apparently due to relatively low abundance. Furthermore, there were no significant differences in the abundance of human- or cow-specific gut microbiome sequences in the downstream impacted sites compared to that in upstream more pristine (control) sites, indicating natural dilution of anthropogenic inputs. Notably, the high number of metagenomic reads carrying antibiotic resistance genes (ARGs) found in all samples was significantly higher than ARG reads in other available freshwater and soil metagenomes, suggesting that these communities may be natural reservoirs of ARGs. The work presented here should serve as a guide for sampling volumes, amount of sequencing to apply, and what bioinformatics analyses to perform when using metagenomics for public health risk studies of environmental samples such as sediments. IMPORTANCE Current agricultural and livestock practices contribute to fecal contamination in the environment and the spread of food- and waterborne disease and antibiotic resistance genes (ARGs). Traditionally, the level of pollution and risk to public health are assessed by culture-based tests for the intestinal bacterium Escherichia coli . However, the accuracy of these traditional methods (e.g., low accuracy in quantification, and false-positive signal when PCR based) and their suitability for sediments remain unclear. We collected sediments for a time series metagenomics study from one of the most highly productive agricultural regions in the United States in order to assess how agricultural runoff affects the native microbial communities and if the presence of Shiga toxin-producing Escherichia coli (STEC) in sediment samples can be detected directly by sequencing. Our study provided important information on the potential for using metagenomics as a tool for assessment of public health risk in natural environments. 
    more » « less
  3. Abstract Background

    There is concern that the microbially rich activated sludge environment of wastewater treatment plants (WWTPs) may contribute to the dissemination of antibiotic resistance genes (ARGs). We applied long-read (nanopore) sequencing to profile ARGs and their neighboring genes to illuminate their fate in the activated sludge treatment by comparing their abundance, genetic locations, mobility potential, and bacterial hosts within activated sludge relative to those in influent sewage across five WWTPs from three continents.

    Results

    The abundances (gene copies per Gb of reads, aka gc/Gb) of all ARGs and those carried by putative pathogens decreased 75–90% from influent sewage (192-605 gc/Gb) to activated sludge (31-62 gc/Gb) at all five WWTPs. Long reads enabled quantification of the percent abundance of ARGs with mobility potential (i.e., located on plasmids or co-located with other mobile genetic elements (MGEs)). The abundance of plasmid-associated ARGs decreased at four of five WWTPs (from 40–73 to 31–68%), and ARGs co-located with transposable, integrative, and conjugative element hallmark genes showed similar trends. Most ARG-associated elements decreased 0.35–13.52% while integrative and transposable elements displayed slight increases at two WWTPs (1.4–2.4%). While resistome and taxonomic compositions both shifted significantly, host phyla for chromosomal ARG classes remained relatively consistent, indicating vertical gene transfer via active biomass growth in activated sludge as the key pathway of chromosomal ARG dissemination.

    Conclusions

    Overall, our results suggest that the activated sludge process acted as a barrier against the proliferation of most ARGs, while those that persisted or increased warrant further attention.

     
    more » « less
  4. Abstract Background

    Antimicrobial resistance (AMR) is a global health concern. High-throughput metagenomic sequencing of microbial samples enables profiling of AMR genes through comparison with curated AMR databases. However, the performance of current methods is often hampered by database incompleteness and the presence of homology/homoplasy with other non-AMR genes in sequenced samples.

    Results

    We present AMR-meta, a database-free and alignment-free approach, based on k-mers, which combines algebraic matrix factorization into metafeatures with regularized regression. Metafeatures capture multi-level gene diversity across the main antibiotic classes. AMR-meta takes in reads from metagenomic shotgun sequencing and outputs predictions about whether those reads contribute to resistance against specific classes of antibiotics. In addition, AMR-meta uses an augmented training strategy that joins an AMR gene database with non-AMR genes (used as negative examples). We compare AMR-meta with AMRPlusPlus, DeepARG, and Meta-MARC, further testing their ensemble via a voting system. In cross-validation, AMR-meta has a median f-score of 0.7 (interquartile range, 0.2–0.9). On semi-synthetic metagenomic data—external test—on average AMR-meta yields a 1.3-fold hit rate increase over existing methods. In terms of run-time, AMR-meta is 3 times faster than DeepARG, 30 times faster than Meta-MARC, and as fast as AMRPlusPlus. Finally, we note that differences in AMR ontologies and observed variance of all tools in classification outputs call for further development on standardization of benchmarking data and protocols.

    Conclusions

    AMR-meta is a fast, accurate classifier that exploits non-AMR negative sets to improve sensitivity and specificity. The differences in AMR ontologies and the high variance of all tools in classification outputs call for the deployment of standard benchmarking data and protocols, to fairly compare AMR prediction tools.

     
    more » « less
  5. Antibiotic resistance is a continually rising threat to global health. A primary driver of the evolution of new strains of resistant pathogens is the horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs). However, identifying and quantifying ARGs subject to HGT remains a significant challenge. Here, we introduce HT-ARGfinder (horizontally transferred ARG finder), a pipeline that detects and enumerates horizontally transferred ARGs in metagenomic data while also estimating the directionality of transfer. To demonstrate the pipeline, we applied it to an array of publicly-available wastewater metagenomes, including hospital sewage. We compare the horizontally transferred ARGs detected across various sample types and estimate their directionality of transfer among donors and recipients. This study introduces a comprehensive tool to track mobile ARGs in wastewater and other aquatic environments. 
    more » « less