skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A cell wall invertase controls nectar volume and sugar composition
SUMMARY Nectar volume and sugar composition are key determinants of the strength of plant–pollinator mutualisms. The main nectar sugars are sucrose, glucose and fructose, which can vary widely in ratio and concentration across species.Brassica spp. produce a hexose‐dominant nectar (high in the monosaccharides glucose and fructose) with very low levels of the disaccharide sucrose. Cell wall invertases (CWINVs) catalyze the irreversible hydrolysis of sucrose into glucose and fructose in the apoplast. We found thatBrCWINV4Ais highly expressed in the nectaries ofBrassica rapa. Moreover, abrcwinv4anull mutant: (i) has greatly reduced CWINV activity in the nectaries; (ii) produces a sucrose‐rich nectar; but (iii) with significantly less volume. These results definitively demonstrate that CWINV activity is not only essential for the production of a hexose‐rich nectar, but also support a hypothetical model of nectar secretion in which its hydrolase activity is required for maintaining a high intracellular‐to‐extracellular sucrose ratio that facilitates the continuous export of sucrose into the nectary apoplast. The extracellular hydrolysis of each sucrose into two hexoses by BrCWINV4A also likely creates the osmotic potential required for nectar droplet formation. These results cumulatively indicate that modulation of CWINV activity can at least partially account for naturally occurring differences in nectar volume and sugar composition. Finally, honeybees prefer nectars with some sucrose, but wild‐typeB. rapaflowers were much more heavily visited than flowers ofbrcwinv4a, suggesting that the potentially attractive sucrose‐rich nectar ofbrcwinv4acould not compensate for its low volume.  more » « less
Award ID(s):
2025297
PAR ID:
10367273
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
The Plant Journal
Volume:
107
Issue:
4
ISSN:
0960-7412
Page Range / eLocation ID:
p. 1016-1028
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Nectar is the main reward that flowers offer to pollinators to entice repeated visitation.Cucurbita pepo(squash) is an excellent model for studying nectar biology, as it has large nectaries that produce large volumes of nectar relative to most other species. Squash is also monoecious, having both female and male flowers on the same plant, which allows comparative analyses of nectary function in one individual. Here, we report the nectary transcriptomes from both female and male nectaries at four stages of floral maturation. Analysis of these transcriptomes and subsequent confirmatory experiments revealed a metabolic progression in nectaries leading from starch synthesis to starch degradation and to sucrose biosynthesis. These results are consistent with previously published models of nectar secretion and also suggest how a sucrose‐rich nectar can be synthesized and secreted in the absence of active transport across the plasma membrane. Nontargeted metabolomic analyses of nectars also confidently identified 40 metabolites in both female and male nectars, with some displaying preferential accumulation in nectar of either male or female flowers. Cumulatively, this study identified gene targets for reverse genetics approaches to study nectary function, as well as previously unreported nectar metabolites that may function in plant‐biotic interactions. 
    more » « less
  2. SUMMARY Floral nectar is a sugary solution produced by nectaries to attract and reward pollinators. Nectar metabolites, such as sugars, are synthesized within the nectary during secretion from both pre‐stored and direct phloem‐derived precursors. In addition to sugars, nectars contain nitrogenous compounds such as amino acids; however, little is known about the role(s) of nitrogen (N) compounds in nectary function. In this study, we investigated N metabolism inCucurbita pepo(squash) floral nectaries in order to understand how various N‐containing compounds are produced and determine the role of N metabolism in nectar secretion. The expression and activity of key enzymes involved in primary N assimilation, including nitrate reductase (NR) and alanine aminotransferase (AlaAT), were induced during secretion inC. peponectaries. Alanine (Ala) accumulated to about 35% of total amino acids in nectaries and nectar during peak secretion; however, alteration of vascular nitrate supply had no impact on Ala accumulation during secretion, suggesting that nectar(y) amino acids are produced by precursors other than nitrate. In addition, nitric oxide (NO) is produced from nitrate and nitrite, at least partially by NR, in nectaries and nectar. Hypoxia‐related processes are induced in nectaries during secretion, including lactic acid and ethanolic fermentation. Finally, treatments that alter nitrate supply affect levels of hypoxic metabolites, nectar volume and nectar sugar composition. The induction of N metabolism inC. peponectaries thus plays an important role in the synthesis and secretion of nectar sugar. 
    more » « less
  3. Background: Environmental enteric dysfunction (EED) causes malnutrition in children in low-resource settings. Stable isotope breath tests have been proposed as non-invasive tests of altered nutrient metabolism and absorption in EED, but uncertainty over interpreting the breath curves has limited their use. The activity of sucrase-isomaltase, the glucosidase enzyme responsible for sucrose hydrolysis, may be reduced in EED. We previously developed a mechanistic model describing the dynamics of the 13C-sucrose breath test (13C-SBT) as a function of underlying metabolic processes. Objective: 1) To determine which breath test curve dynamics are associated with sucrose hydrolysis and with the transport and metabolism of the fructose and glucose moieties, and 2) to propose and evaluate a model-based diagnostic for the loss of activity of sucrase-isomaltase. Methods: We applied the mechanistic model to two sets of exploratory 13C-SBT experiments in healthy adult participants. First, 19 participants received differently labeled sucrose tracers (U-13C fructose, U-13C glucose, and U-13C sucrose) in a cross-over study. Second, 16 participants received a sucrose tracer accompanied by 0 mg, 100 mg, and 750 mg of Reducose®, a sucrase-isomaltase inhibitor. We evaluated a model-based diagnostic distinguishing between inhibitor concentrations using receiver operator curves, comparing to conventional statistics. Results: Sucrose hydrolysis and the transport and metabolism of the fructose and glucose moieties were reflected in the same mechanistic process. The model distinguishes these processes from the fraction of tracer exhaled and an exponential metabolic process. The model-based diagnostic performed as well as the conventional summary statistics in distinguishing between no and low inhibition (AUC 0.77 vs 0.66–0.79) and for low vs high inhibition (AUC 0.92 vs 0.91–0.99). Conclusions: Current summary approaches to interpreting 13C breath test curves may be limited to identifying only gross gut dysfunction. A mechanistic model-based approach improved interpretation of breath test curves characterizing sucrose metabolism. 
    more » « less
  4. Haloacid dehalogenases (HAD) are members of a large superfamily that includes many Structural Genomics proteins with poorly characterized functionality. This superfamily consists of multiple types of enzymes that can act as sugar phosphatases, haloacid dehalogenases, phosphonoacetaldehyde hydrolases, ATPases, or phosphate monoesterases. Here, we report on predicted functional annotations and experimental testing by direct biochemical assay for Structural Genomics proteins from the HAD superfamily. To characterize the functions of HAD superfamily members, nine representative HAD proteins and 21 structural genomics proteins are analyzed. Using techniques based on computed chemical and electrostatic properties of individual amino acids, the functions of five structural genomics proteins from the HAD superfamily are predicted and validated by biochemical assays. A dehalogenase-like hydrolase, RSc1362 (Uniprot Q8XZN3, PDB 3UMB) is predicted to be a dehalogenase and dehalogenase activity is confirmed experimentally. Four proteins predicted to be sugar phosphatases are characterized as follows: a sugar phosphatase from Thermophilus volcanium (Uniprot Q978Y6) with trehalose-6-phosphate phosphatase and fructose-6-phosphate phosphatase activity; haloacid dehalogenase-like hydrolase from Bacteroides thetaiotaomicron (Uniprot Q8A2F3; PDB 3NIW) with fructose-6-phosphate phosphatase and sucrose-6-phosphate phosphatase activity; putative phosphatase from Eubacterium rectale (Uniprot D0VWU2; PDB 3DAO) as a sucrose-6-phosphate phosphatase; and hypothetical protein from Geobacillus kaustophilus (Uniprot Q5L139; PDB 2PQ0) as a fructose-6-phosphate phosphatase. Most of these sugar phosphatases showed some substrate promiscuity. 
    more » « less
  5. Kittayapong, Pattamaporn (Ed.)
    BackgroundSugar feeding is an important behavior which may determine vector potential of female mosquitoes. Sugar meals can reduce blood feeding frequency, enhance survival, and decrease fecundity, as well as provide energetic reserves to fuel energy intensive behaviors such as mating and host seeking. Sugar feeding behavior can be harnessed for vector control (e.g. attractive toxic sugar baits). Few studies have addressed sugar feeding ofAedes albopictus, a vector of arboviruses of public health importance, including dengue and Zika viruses. To address this knowledge gap, we assessed sugar feeding patterns ofAe.albopictusfor the first time in its invasive northeastern USA range. Methodology/Principal findingsUsing the cold anthrone fructose assay with robust sample sizes, we demonstrated that a large percentage of both male (49.6%) and female (41.8%)Ae.albopictusfed on plant or homopteran derived sugar sources within 24 hrs prior to capture. Our results suggest that sugar feeding behavior increases when environmental conditions are dry (high saturation deficit) and may vary by behavioral status (host seeking vs. resting). Furthermore, mosquitoes collected on properties with flowers (>3 blooms) had higher fructose concentrations compared to those collected from properties with few to no flowers (0–3). Conclusions/SignificanceOur results provide the first evidence ofAe.albopictussugar feeding behavior in the Northeastern US and reveal relatively high rates of sugar feeding. These results suggest the potential success for regional deployment of toxic sugar baits. In addition, we demonstrate the impact of several environmental and mosquito parameters (saturation deficit, presence of flowers, host seeking status, and sex) on sugar feeding. Placing sugar feeding behavior in the context of these environmental and mosquito parameters provides further insight into spatiotemporal dynamics of feeding behavior forAe.albopictus, and in turn, provides information for evidence-based control decisions. 
    more » « less