skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Functional annotation of haloacid dehalogenase superfamily structural genomics proteins
Haloacid dehalogenases (HAD) are members of a large superfamily that includes many Structural Genomics proteins with poorly characterized functionality. This superfamily consists of multiple types of enzymes that can act as sugar phosphatases, haloacid dehalogenases, phosphonoacetaldehyde hydrolases, ATPases, or phosphate monoesterases. Here, we report on predicted functional annotations and experimental testing by direct biochemical assay for Structural Genomics proteins from the HAD superfamily. To characterize the functions of HAD superfamily members, nine representative HAD proteins and 21 structural genomics proteins are analyzed. Using techniques based on computed chemical and electrostatic properties of individual amino acids, the functions of five structural genomics proteins from the HAD superfamily are predicted and validated by biochemical assays. A dehalogenase-like hydrolase, RSc1362 (Uniprot Q8XZN3, PDB 3UMB) is predicted to be a dehalogenase and dehalogenase activity is confirmed experimentally. Four proteins predicted to be sugar phosphatases are characterized as follows: a sugar phosphatase from Thermophilus volcanium (Uniprot Q978Y6) with trehalose-6-phosphate phosphatase and fructose-6-phosphate phosphatase activity; haloacid dehalogenase-like hydrolase from Bacteroides thetaiotaomicron (Uniprot Q8A2F3; PDB 3NIW) with fructose-6-phosphate phosphatase and sucrose-6-phosphate phosphatase activity; putative phosphatase from Eubacterium rectale (Uniprot D0VWU2; PDB 3DAO) as a sucrose-6-phosphate phosphatase; and hypothetical protein from Geobacillus kaustophilus (Uniprot Q5L139; PDB 2PQ0) as a fructose-6-phosphate phosphatase. Most of these sugar phosphatases showed some substrate promiscuity.  more » « less
Award ID(s):
1905214 2147498
PAR ID:
10468505
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Portland Press
Date Published:
Journal Name:
Biochemical Journal
Volume:
480
Issue:
19
ISSN:
0264-6021
Page Range / eLocation ID:
1553 to 1569
Subject(s) / Keyword(s):
Haloacid dehalogenase Hypothetical protein Structural genomics Function prediction POOL SALSA Substrate specificity Sugar phosphate phosphatase
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY Nectar volume and sugar composition are key determinants of the strength of plant–pollinator mutualisms. The main nectar sugars are sucrose, glucose and fructose, which can vary widely in ratio and concentration across species.Brassica spp. produce a hexose‐dominant nectar (high in the monosaccharides glucose and fructose) with very low levels of the disaccharide sucrose. Cell wall invertases (CWINVs) catalyze the irreversible hydrolysis of sucrose into glucose and fructose in the apoplast. We found thatBrCWINV4Ais highly expressed in the nectaries ofBrassica rapa. Moreover, abrcwinv4anull mutant: (i) has greatly reduced CWINV activity in the nectaries; (ii) produces a sucrose‐rich nectar; but (iii) with significantly less volume. These results definitively demonstrate that CWINV activity is not only essential for the production of a hexose‐rich nectar, but also support a hypothetical model of nectar secretion in which its hydrolase activity is required for maintaining a high intracellular‐to‐extracellular sucrose ratio that facilitates the continuous export of sucrose into the nectary apoplast. The extracellular hydrolysis of each sucrose into two hexoses by BrCWINV4A also likely creates the osmotic potential required for nectar droplet formation. These results cumulatively indicate that modulation of CWINV activity can at least partially account for naturally occurring differences in nectar volume and sugar composition. Finally, honeybees prefer nectars with some sucrose, but wild‐typeB. rapaflowers were much more heavily visited than flowers ofbrcwinv4a, suggesting that the potentially attractive sucrose‐rich nectar ofbrcwinv4acould not compensate for its low volume. 
    more » « less
  2. Brun, Yves V. (Ed.)
    ABSTRACT Bacteria have a variety of mechanisms for adapting to environmental perturbations. Changes in oxygen availability result in a switch between aerobic and anaerobic respiration, whereas iron limitation may lead to siderophore secretion. In addition to metabolic adaptations, many organisms respond by altering their cell shape. Caulobacter crescentus , when grown under phosphate-limiting conditions, dramatically elongates its polar stalk appendage. The stalk is hypothesized to facilitate phosphate uptake; however, the mechanistic details of stalk synthesis are not well characterized. We used a chemical mutagenesis approach to isolate and characterize stalk-deficient mutants, one of which had two mutations in the phosphomannose isomerase gene ( manA ) that were necessary and sufficient to inhibit stalk elongation. Transcription of the pho regulon was unaffected in the manA mutant; therefore, ManA plays a unique regulatory role in stalk synthesis. The mutant ManA had reduced enzymatic activity, resulting in a 5-fold increase in the intracellular fructose 6-phosphate/mannose 6-phosphate ratio. This metabolic imbalance impaired the synthesis of cellular envelope components derived from mannose 6-phosphate, namely, lipopolysaccharide O-antigen and exopolysaccharide. Furthermore, the manA mutations prevented C. crescentus cells from efficiently entering stationary phase. Deletion of the stationary-phase response regulator gene spdR inhibited stalk elongation in wild-type cells, while overproduction of the alarmone ppGpp, which triggers growth arrest and stationary-phase entry, increased stalk length in the manA mutant strain. These results demonstrate that sugar-phosphate metabolism regulates stalk elongation independently of phosphate starvation. IMPORTANCE Metabolic control of bacterial cell shape is an important mechanism for adapting to environmental perturbations. Caulobacter crescentus dramatically elongates its polar stalk appendage in response to phosphate starvation. To investigate the mechanism of this morphological adaptation, we isolated stalk-deficient mutants, one of which had mutations in the phosphomannose isomerase gene ( manA ) that blocked stalk elongation, despite normal activation of the phosphate starvation response. The mutant ManA resulted in an imbalance in sugar-phosphate concentrations, which had effects on the synthesis of cellular envelope components and entry into stationary phase. Due to the interconnectivity of metabolic pathways, our findings may suggest more generally that the modulation of bacterial cell shape involves the regulation of growth phase and the synthesis of cellular building blocks. 
    more » « less
  3. ABSTRACT DeoR-type helix-turn-helix (HTH) domain proteins are transcriptional regulators of sugar and nucleoside metabolism in diverse bacteria and also occur in select archaea. In the model archaeon Haloferax volcanii , previous work implicated GlpR, a DeoR-type transcriptional regulator, in the transcriptional repression of glpR and the gene encoding the fructose-specific phosphofructokinase ( pfkB ) during growth on glycerol. However, the global regulon governed by GlpR remained unclear. Here, we compared transcriptomes of wild-type and Δ glpR mutant strains grown on glycerol and glucose to detect significant transcript level differences for nearly 50 new genes regulated by GlpR. By coupling computational prediction of GlpR binding sequences with in vivo and in vitro DNA binding experiments, we determined that GlpR directly controls genes encoding enzymes involved in fructose degradation, including fructose bisphosphate aldolase, a central control point in glycolysis. GlpR also directly controls other transcription factors. In contrast, other metabolic pathways appear to be under the indirect influence of GlpR. In vitro experiments demonstrated that GlpR purifies to function as a tetramer that binds the effector molecule fructose-1-phosphate (F1P). These results suggest that H. volcanii GlpR functions as a direct negative regulator of fructose degradation during growth on carbon sources other than fructose, such as glucose and glycerol, and that GlpR bears striking functional similarity to bacterial DeoR-type regulators. IMPORTANCE Many archaea are extremophiles, able to thrive in habitats of extreme salinity, pH and temperature. These biological properties are ideal for applications in biotechnology. However, limited knowledge of archaeal metabolism is a bottleneck that prevents the broad use of archaea as microbial factories for industrial products. Here, we characterize how sugar uptake and use are regulated in a species that lives in high salinity. We demonstrate that a key sugar regulatory protein in this archaeal species functions using molecular mechanisms conserved with distantly related bacterial species. 
    more » « less
  4. The pseudophosphatases, atypical members of the protein tyrosine phosphatase family, have emerged as bona fide signaling regulators within the past two decades. Their roles as regulators have led to a renaissance of the pseudophosphatase and pseudoenyme fields, catapulting interest from a mere curiosity to intriguing and relevant proteins to investigate. Pseudophosphatases make up approximately fourteen percent of the phosphatase family, and are conserved throughout evolution. Pseudophosphatases, along with pseudokinases, are important players in physiology and pathophysiology. These atypical members of the protein tyrosine phosphatase and protein tyrosine kinase superfamily, respectively, are rendered catalytically inactive through mutations within their catalytic active signature motif and/or other important domains required for catalysis. This new interest in the pursuit of the relevant functions of these proteins has resulted in an elucidation of their roles in signaling cascades and diseases. There is a rapid accumulation of knowledge of diseases linked to their dysregulation, such as neuropathies and various cancers. This review analyzes the involvement of pseudophosphatases in diseases, highlighting the function of various role(s) of pseudophosphatases involvement in pathologies, and thus providing a platform to strongly consider them as key therapeutic drug targets. 
    more » « less
  5. Abstract MAPK signaling modules play crucial roles in regulating numerous biological processes in all eukaryotic cells. How MAPK signaling specificity and strength are tightly controlled remains a major challenging question. InArabidopsisstomatal development, the MAPKK Kinase YODA (YDA) functions at the cell periphery to inhibit stomatal production by activating MAPK 3 and 6 (MPK3/6) that directly phosphorylate stomatal fate-determining transcription factors for degradation in the nucleus. Recently, we demonstrated that BSL1, one of the four BSL protein phosphatases, localizes to the cell cortex to activate YDA, elevating MPK3/6 activity to suppress stomatal formation. Here, we showed that at the plasma membrane, all four members of BSL proteins contribute to the YDA activation. However, in the nucleus, specific BSL members (BSL2, BSL3, and BSU1) directly deactivate MPK6 to counteract the linear MAPK pathway, thereby promoting stomatal formation. Thus, the pivotal MAPK signaling in stomatal fate determination is spatially modulated by a signaling dichotomy of the BSL protein phosphatases inArabidopsis, providing a prominent example of how MAPK activities are integrated and specified by signaling compartmentalization at the subcellular level. 
    more » « less