Secondary ion mass spectrometry techniques are used to study trace elements in organic samples where matrix compositions vary spatially. This study was conducted to develop calibrations for lithium content and lithium isotope measurements in kerogen. Known concentrations of Li ions (6Li and 7Li) were implanted into organic polymers, with a range of H/C and O/C ratios similar to kerogen, along with glassy carbon (SPI Glas‐22) and silicate glass (NIST SRM 612). Results show that Li content calibration factors (K*) are similar for carbonaceous samples when analysed using a 5kV secondary ion accelerating voltage. Using a 9 kV secondary ion accelerating voltage, K* factors are negatively correlated with the sample O content, changing ~ 30% between 0 and 15 oxygen atomic %. Thus, to avoid the matrix effect related to O content, using a 5 kV secondary ion accelerating voltage is best for quantification of Li contents based on 7Li+/12C+ ratios. Under these analytical conditions, Li ppm (atomic) = (132 ( 8) × 7Li+/12C+) × 12C atom fraction of the sample measured. Lithium isotope ratio measurements of SPI Glas‐22 and NIST SRM 612 are within uncertainty; however, the organic polymer samples as a group show a 10‰ higher δ7Li than NIST SRM 612.
more »
« less
Secondary Ion Mass Spectrometry Reference Materials for Lithium in Carbonaceous Matrices
Secondary ion mass spectrometry techniques are used to study trace elements in organic samples where matrix compositions vary spatially. This study was conducted to develop calibrations for lithium content and lithium isotope measurements in kerogen. Known concentrations of Li ions (6Li and7Li) were implanted into organic polymers, with a range of H/C and O/C ratios similar to kerogen, along with glassy carbon (SPI Glas‐22) and silicate glass (NIST SRM 612). Results show that Li content calibration factors (K*) are similar for carbonaceous samples when analysed using a 5 kV secondary ion accelerating voltage. Using a 9 kV secondary ion accelerating voltage,K* factors are negatively correlated with the sample O content, changing ~ 30% between 0 and 15 oxygen atomic %. Thus, to avoid the matrix effect related to O content, using a 5 kV secondary ion accelerating voltage is best for quantification of Li contents based on7Li+/12C+ratios. Under these analytical conditions, Li ppm (atomic) = (132 (± 8) × 7Li+/12C+) × 12C atom fraction of the sample measured. Lithium isotope ratio measurements of SPI Glas‐22 and NIST SRM 612 are within uncertainty; however, the organic polymer samples as a group show a 10‰ higher δ7Li than NIST SRM 612.
more »
« less
- Award ID(s):
- 1819550
- PAR ID:
- 10367311
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Geostandards and Geoanalytical Research
- Volume:
- 46
- Issue:
- 2
- ISSN:
- 1639-4488
- Page Range / eLocation ID:
- p. 261-276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Lithium isotopes (δ7Li) in coals have been shown to increase with thermal maturity, suggesting preferential release of 6Li from kerogen to porefluids. This has important implications for paleoclimate studies based on δ7Li of buried marine carbonates, which may incorporate Li from porefluids during recrystallization. Here, the Li content and isotopic composition of macerals from two coal seams intruded by dikes, were studied as a function of temperature across a thermal gradient into the unmetamorphosed coal. Samples were collected in Colorado (USA) from a Vermejo Fm. coal seam intruded by a mafic-lamprophyre dike and compared to a Dutch Creek No.2 coal seam intruded by felsic-porphyry dike; a potential source of Li-rich fluids. The Li-content and Li-isotope compositions of coal macerals were measured in situ by Secondary Ion Mass Spectrometry (SIMS). The macerals of the Vermejo coal samples, buried to VRo 0.68% (Tmax = 104 ◦C), contained <1.5 μg/g Li with an average vitrinite δ7Li of −28.4 ± 1.6‰, while liptinite and inertinite were heavier, averaging −15.4 ± 3.6‰ and − 10.5 ± 3.7‰, respectively. The contact metamorphosed vitrinite/coke showed the greatest change with temperature with δ7Li 18 to 37‰ heavier than the unmetamorphosed vitrinite. The Dutch Creek coal, buried to VRo 1.15% (Tmax = 147 ◦C), prior to dike emplacement, may have released Li during burial, as less isotopic change was observed between contact metamorphosed and unmetamorphosed macerals. Overall, Li contents were < 1 μg/g, and the vitrinite in metamorphosed coal had δ7Li values 8 to 21‰ heavier than the unmetamorphosed coal. SIMS measurements on macerals near the dike did not show an increase in Li-content indicative of Li derived from dike fluids, however previous bulk measurements that included silicates showed slightly higher (2-3 μg/g) Li-contents near the dike, suggesting possible Li incorporation from dike fluid into metamorphic silicates. A negative correlation was observed between Li-content and 12C+/30Si+ count ratios, indicating that at metamorphic temperatures Li becomes concentrated in silicates.more » « less
-
Abstract A new concentrated ternary salt ether‐based electrolyte enables stable cycling of lithium metal battery (LMB) cells with high‐mass‐loading (13.8 mg cm−2, 2.5 mAh cm−2) NMC622 (LiNi0.6Co0.2Mn0.2O2) cathodes and 50 μm Li anodes. Termed “CETHER‐3,” this electrolyte is based on LiTFSI, LiDFOB, and LiBF4with 5 vol% fluorinated ethylene carbonate in 1,2‐dimethoxyethane. Commercial carbonate and state‐of‐the‐art binary salt ether electrolytes were also tested as baselines. With CETHER‐3, the electrochemical performance of the full‐cell battery is among the most favorably reported in terms of high‐voltage cycling stability. For example, LiNixMnyCo1–x–yO2(NMC)‐Li metal cells retain 80% capacity at 430 cycles with a 4.4 V cut‐off and 83% capacity at 100 cycles with a 4.5 V cut‐off (charge at C/5, discharge at C/2). According to simulation by density functional theory and molecular dynamics, this favorable performance is an outcome of enhanced coordination between Li+and the solvent/salt molecules. Combining advanced microscopy (high‐resolution transmission electron microscopy, scanning electron microscopy) and surface science (X‐ray photoelectron spectroscopy, time‐of‐fight secondary ion mass spectroscopy, Fourier‐transform infrared spectroscopy, Raman spectroscopy), it is demonstrated that a thinner and more stable cathode electrolyte interphase (CEI) and solid electrolyte interphase (SEI) are formed. The CEI is rich in lithium sulfide (Li2SO3), while the SEI is rich in Li3N and LiF. During cycling, the CEI/SEI suppresses both the deleterious transformation of the cathode R‐3m layered near‐surface structure into disordered rock salt and the growth of lithium metal dendrites.more » « less
-
Abstract Lithium isotopes are used to trace weathering intensity, but little is known about the processes that fractionate them in highly weathered settings, where secondary minerals play a dominant role in weathering reactions. To help fill this gap in our knowledge of Li isotope systematics, we investigated Li isotope fractionation at an andesitic catchment in Puerto Rico, where the highest rates of silicate weathering on Earth have been documented. We found the lowest δ7Li values published to date for porewater (−27‰) and bulk regolith (−38‰), representing apparent fractionations relative to parent rock of −31‰ and −42‰, respectively. We also found δ7Li values that are lower in the exchangeable fraction than in the bulk regolith or porewater, the opposite than expected from secondary mineral precipitation. We interpret these large isotopic offsets and the unusual relationships between Li pools as resulting from two distinct weathering processes at different depths in the regolith. At the bedrock‐regolith transition (9.3–8.5 m depth), secondary mineral precipitation preferentially retains the lighter6Li isotope. These minerals then dissolve further up the profile, leaching6Li from the bulk solid, with a total variation of about +50‰withinthe profile, attributable primarily to clay dissolution. Importantly, streamwater δ7Li (about +35‰) is divorced entirely from these regolith weathering processes, instead reflecting deeper weathering reactions (>9.3 m). Our work thus shows that the δ7Li of waters draining highly weathered catchments may reflect bedrock mineralogy and hydrology, rather than weathering intensity in the regolith covering the catchment.more » « less
-
Abstract Lithium isotope ratios (δ7Li) of rivers are increasingly serving as a diagnostic of the balance between chemical and physical weathering contributions to overall landscape denudation rates. Here, we show that intermediate weathering intensities and highly enriched stream δ7Li values typically associated with lowland floodplains can also describe small upland watersheds subject to cool, wet climates. This behavior is revealed by stream δ7Li between +22.4 and +23.5‰ within a Critical Zone observatory located in the Cévennes region of southern France, where dilute stream solute concentrations and significant atmospheric deposition otherwise mask evidence of incongruence. The water‐rock reaction pathways underlying this behavior are quantified through a multicomponent, isotope‐enabled reactive transport model. Using geochemical characterization of soil profiles, bedrock, and long‐term stream samples as constraints, we evolve the simulation from an initially unweathered granite to a steady state weathering profile which reflects the balance between (a) fluid infiltration and drainage and (b) bedrock uplift and soil erosion. Enriched stream δ7Li occurs because Li is strongly incorporated into actively precipitating secondary clay phases beyond what prior laboratory experiments have suggested. Chemical weathering incongruence is maintained despite relatively slow reaction rates and moderate clay accumulation due to a combination of two factors. First, reactive primary mineral phases persist across the weathering profile and effectively “shield” the secondary clays from resolubilization due to their greater solubility. Second, the clays accumulating in the near‐surface profile are relatively mature weathering byproducts. These factors promote characteristically low total dissolved solute export from the catchment despite significant input of exogenous dust.more » « less