skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Concentrated ternary ether electrolyte allows for stable cycling of a lithium metal battery with commercial mass loading high‐nickel NMC and thin anodes
Abstract A new concentrated ternary salt ether‐based electrolyte enables stable cycling of lithium metal battery (LMB) cells with high‐mass‐loading (13.8 mg cm−2, 2.5 mAh cm−2) NMC622 (LiNi0.6Co0.2Mn0.2O2) cathodes and 50 μm Li anodes. Termed “CETHER‐3,” this electrolyte is based on LiTFSI, LiDFOB, and LiBF4with 5 vol% fluorinated ethylene carbonate in 1,2‐dimethoxyethane. Commercial carbonate and state‐of‐the‐art binary salt ether electrolytes were also tested as baselines. With CETHER‐3, the electrochemical performance of the full‐cell battery is among the most favorably reported in terms of high‐voltage cycling stability. For example, LiNixMnyCo1–x–yO2(NMC)‐Li metal cells retain 80% capacity at 430 cycles with a 4.4 V cut‐off and 83% capacity at 100 cycles with a 4.5 V cut‐off (charge at C/5, discharge at C/2). According to simulation by density functional theory and molecular dynamics, this favorable performance is an outcome of enhanced coordination between Li+and the solvent/salt molecules. Combining advanced microscopy (high‐resolution transmission electron microscopy, scanning electron microscopy) and surface science (X‐ray photoelectron spectroscopy, time‐of‐fight secondary ion mass spectroscopy, Fourier‐transform infrared spectroscopy, Raman spectroscopy), it is demonstrated that a thinner and more stable cathode electrolyte interphase (CEI) and solid electrolyte interphase (SEI) are formed. The CEI is rich in lithium sulfide (Li2SO3), while the SEI is rich in Li3N and LiF. During cycling, the CEI/SEI suppresses both the deleterious transformation of the cathode R‐3m layered near‐surface structure into disordered rock salt and the growth of lithium metal dendrites.  more » « less
Award ID(s):
1911905
PAR ID:
10471664
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Carbon Energy
Volume:
5
Issue:
3
ISSN:
2637-9368
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Lithium‐ion batteries (LIBs) are increasingly encouraged to enhance their environmental friendliness and safety while maintaining optimal energy density and cost‐effectiveness. Although various electrolytes using greener and safer glyme solvents have been reported, the low charge voltage (usually lower than 4.0 V vs Li/Li+) restricts the energy density of LIBs. Herein, tetraglyme, a less‐toxic, non‐volatile, and non‐flammable ether solvent, is exploited to build safer and greener LIBs. It is demonstrated that ether electrolytes, at a standard salt concentration (1 m), can be reversibly cycled to 4.5 V vs Li/Li+. Anchored with Boron‐rich cathode‐electrolyte interphase (CEI) and mitigated current collector corrosion, the LiNi0.8Mn0.1Co0.1O2(NMC811) cathode delivers competitive cyclability versus commercial carbonate electrolytes when charged to 4.5 V. Synchrotron spectroscopic and imaging analyses show that the tetraglyme electrolyte can sufficiently suppress the overcharge behavior associated with the high‐voltage electrolyte decomposition, which is advantageous over previously reported glyme electrolytes. The new electrolyte also enables minimal transition metal dissolution and deposition. NMC811||hard carbon full cell delivers excellent cycling stability at C/3 with a high average Coulombic efficiency of 99.77%. This work reports an oxidation‐resilient tetraglyme electrolyte with record‐high 4.5 V stability and enlightens further applications of glyme solvents for sustainable LIBs by designing Boron‐rich interphases. 
    more » « less
  2. Abstract Interphase layers that form at contact points between the solid electrolyte (SE) and cathode active material in solid‐state lithium‐ion batteries (SS‐LIBs) increase cell impedance, but the mechanisms for this interphase formation are poorly understood. Here, we demonstrate a simple workflow to study cathode–electrolyte interphase (CEI) formation using 4D‐scanning transmission electron microscopy (4D‐STEM) that does not require SS‐LIB assembly. We show benefits of MoCl5:EtOH as a chemical delithiating agent, and prepare chemically delithiated cathode LiNi0.6Co0.2Mn0.2O2(NMC) powder in contact with Li10GeP2S12(LGPS) SE powder as a SS‐LIB CEI surrogate. We map the composition and structure of the CEI layers using 4D‐STEM, energy dispersive X‐ray spectroscopy (EDS), and electron pair distribution function analysis (ePDF). EDS indicates O migration from NMC into LGPS. ePDF analysis indicates sulfate and phosphate formation localized on the surface of LGPS, as well as Li2O formation within the LGPS phase, and self‐decomposition of NMC. These results are consistent with an electrochemical self‐discharge mechanism for interphase formation arising from coupled redox reactions of sulfur oxidation in LGPS and transition metal reduction in NMC. This suggests that coatings which stop anion transport but allow Li+and etransport may prevent interphase formation and reduce impedance in SS‐LIBs. 
    more » « less
  3. Abstract The solid electrolyte interphase (SEI) dictates the cycling stability of lithium‐metal batteries. Here, direct atomic imaging of the SEI's phase components and their spatial arrangement is achieved, using ultralow‐dosage cryogenic transmission electron microscopy. The results show that, surprisingly, a lot of the deposited Li metal has amorphous atomic structure, likely due to carbon and oxygen impurities, and that crystalline lithium carbonate is not stable and readily decomposes when contacting the lithium metal. Lithium carbonate distributed in the outer SEI also continuously reacts with the electrolyte to produce gas, resulting in a dynamically evolving and porous SEI. Sulfur‐containing additives cause the SEI to preferentially generate Li2SO4and overlithiated lithium sulfate and lithium oxide, which encapsulate lithium carbonate in the middle, limiting SEI thickening and enhancing battery life by a factor of ten. The spatial mapping of the SEI gradient amorphous (polymeric → inorganic → metallic) and crystalline phase components provides guidance for designing electrolyte additives. 
    more » « less
  4. Abstract High‐voltage lithium metal batteries with nickel‐rich oxide cathodes (LiNi0.8Co0.1Mn0.1O2, NCM811) represent one of the most promising approaches to achieve high energy density up to 500 Wh kg−1. However, severe interfacial side reactions occur at both NCM811 cathode and lithium anode at ultrahigh voltages (>4.6 V). To address these issues, various electrolytes have been developed, but they still suffer from electrolyte decomposition, leading to moderate voltages and insufficient cycling. Herein, we introduce (3,3,3‐trifluoropropyl)trimethoxy silane (TTMS) as an asymmetrically fluorinated single solvent, which incorporates both strongly solvating (─OCH3) and weakly solvating (─CF3) groups. The designed 2.1 mol L−1(M) LiFSI/TTMS electrolyte achieves excellent compatibility with both NCM811 cathode and Li metal anode due to its unique anion‐dominating solvation structures and inorganic‐rich interphase formation. Consequently, it enables stable cycling in the Li||NCM811 battery at an ultrahigh voltage of 4.8 V, with 84.5% capacity retention after 300 cycles. Even under more aggressive conditions, including high temperature (60 °C) and anode‐less configuration (N/P ratio = 1.76), the Li||NCM811 battery exhibits remarkable capacity retention (>80%) over 300 cycles. This work underscores the effectiveness of electrolyte engineering for developing ultrahigh‐voltage and long‐cycling battery systems. 
    more » « less
  5. Abstract A dual‐layer interphase that consists of an in‐situ‐formed lithium carboxylate organic layer and a thin BF3‐doped monolayer Ti3C2MXene on Li metal is reported. The honeycomb‐structured organic layer increases the wetting of electrolyte, leading to a thin solid electrolyte interface (SEI). While the BF3‐doped monolayer MXene provides abundant active sites for lithium homogeneous nucleation and growth, resulting in about 50% reduced thickness of inorganic‐rich components among the SEI layer. A low overpotential of less than 30 mV over 1000 h cycling in symmetric cells is received. The functional BF3 groups, along with the excellent electronic conductivity and smooth surface of the MXene, greatly reduce the lithium plating/stripping energy barrier, enabling a dendrite‐free lithium‐metal anode. The battery with this dual‐layer coated lithium metal as the anode displays greatly improved electrochemical performance. A high capacity‐retention of 175.4 mAh g−1at 1.0 C is achieved after 350 cycles. In a pouch cell with a capacity of 475 mAh, the battery still exhibits a high discharge capacity of 165.6 mAh g−1with a capacity retention of 90.2% after 200 cycles. In contrast to the fast capacity decay of pure Li metal, the battery using NCA as the cathode also displays excellent capacity retention in both coin and pouch cells. The dual‐layer modified surface provides an effective approach in stabilizing the Li‐metal anode. 
    more » « less