skip to main content


Title: Corrosion Resistance of Sulfur–Selenium Alloy Coatings
Abstract

Despite decades of research, metallic corrosion remains a long‐standing challenge in many engineering applications. Specifically, designing a material that can resist corrosion both in abiotic as well as biotic environments remains elusive. Here a lightweight sulfur–selenium (S–Se) alloy is designed with high stiffness and ductility that can serve as an excellent corrosion‐resistant coating with protection efficiency of ≈99.9% for steel in a wide range of diverse environments. S–Se coated mild steel shows a corrosion rate that is 6–7 orders of magnitude lower than bare metal in abiotic (simulated seawater and sodium sulfate solution) and biotic (sulfate‐reducing bacterial medium) environments. The coating is strongly adhesive, mechanically robust, and demonstrates excellent damage/deformation recovery properties, which provide the added advantage of significantly reducing the probability of a defect being generated and sustained in the coating, thus improving its longevity. The high corrosion resistance of the alloy is attributed in diverse environments to its semicrystalline, nonporous, antimicrobial, and viscoelastic nature with superior mechanical performance, enabling it to successfully block a variety of diffusing species.

 
more » « less
Award ID(s):
1849206
NSF-PAR ID:
10367334
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;  ;  ;  ;   « less
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
33
Issue:
51
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    316L stainless steel (316L SS) is a flagship material for structural applications in corrosive environments, having been extensively studied for decades for its favorable balance between mechanical and corrosion properties. More recently, 316L SS has also proven to have excellent printability when parts are produced with additive manufacturing techniques, notably laser powder bed fusion (LPBF). Because of the harsh thermo-mechanical cycles experienced during rapid solidification and cooling, LPBF processing tends to generate unique microstructures. Strong heterogeneities can be found inside grains, including trapped elements, nano-inclusions, and a high density of dislocations that form the so-called cellular structure. Interestingly, LPBF 316L SS not only exhibits better mechanical properties than its conventionally processed counterpart, but it also usually offers much higher resistance to pitting in chloride solutions. Unfortunately, the complexity of the LPBF microstructures, in addition to process-induced defects, such as porosity and surface roughness, have slowed progress toward linking specific microstructural features to corrosion susceptibility and complicated the development of calibrated simulations of pitting phenomena. The first part of this article is dedicated to an in-depth review of the microstructures found in LPBF 316L SS and their potential effects on the corrosion properties, with an emphasis on pitting resistance. The second part offers a perspective of some relevant modeling techniques available to simulate the corrosion of LPBF 316L SS, including current challenges that should be overcome.

     
    more » « less
  2. Abstract

    Records of the Ediacaran carbon cycle (635–541 million years ago) include the Shuram excursion (SE), the largest negative carbonate carbon isotope excursion in Earth history (down to −12‰). The nature of this excursion remains enigmatic given the difficulties of interpreting a perceived extreme global decrease in the δ13C of seawater dissolved inorganic carbon. Here, we present carbonate and organic carbon isotope (δ13Ccarband δ13Corg) records from the Ediacaran Doushantuo Formation along a proximal‐to‐distal transect across the Yangtze Platform of South China as a test of the spatial variation of theSE. Contrary to expectations, our results show that the magnitude and morphology of this excursion and its relationship with coexisting δ13Corgare highly heterogeneous across the platform. Integrated geochemical, mineralogical, petrographic, and stratigraphic evidence indicates that theSEis a primary marine signature. Data compilations demonstrate that theSEwas also accompanied globally by parallel negative shifts of δ34S of carbonate‐associated sulfate (CAS) and increased87Sr/86Sr ratio and coastalCASconcentration, suggesting elevated continental weathering and coastal marine sulfate concentration during theSE. In light of these observations, we propose a heterogeneous oxidation model to explain the high spatial heterogeneity of theSEand coexisting δ13Corgrecords of the Doushantuo, with likely relevance to theSEin other regions. In this model, we infer continued marine redox stratification through theSEbut with increased availability of oxidants (e.g., O2and sulfate) limited to marginal near‐surface marine environments. Oxidation of limited spatiotemporal extent provides a mechanism to drive heterogeneous oxidation of subsurface reduced carbon mostly in shelf areas. Regardless of the mechanism driving theSE, future models must consider the evidence for spatial heterogeneity in δ13C presented in this study.

     
    more » « less
  3. "Binder jetting is an economical and rapid additive manufacturing process that offers vast opportunities to combine a variety of materials, yielding interesting and useful properties. However, binder jetted parts, which can involve at least one hard and one soft material, can be more susceptible to corrosion and wear compared to conventional single alloy components produced by laser sintering or other high-temperature processes. This paper discusses the electroless nickel coating on 420 Stainless Steel and Bronze Binder-Jetted Composites(BJC). Electroless nickel, a well-known coating to provide high corrosion resistance and hardness, was attempted on BJC. To produce high-quality smooth electroless nickel coatings, we attempted the Taguchi Design of Experiments. Our design of experiment involved important factors, such as the surface preparation methodology prior to electroless nickel coating. During electroless nickel coating, we investigated the role of phosphorus content, temperature, and time in the production of smooth deposition. Optical microscopy was performed for qualitative and quantitative analysis. We also performed SEM to investigate the microstructure of different electroless coatings on BJC. Interestingly, all the combinations of parameters used in the electroless nickel coating produced different microstructures. We found that surface preparation was a critical factor in determining the smoothness of the film. We also showed that the dependent on the Ni solution’s phosphorus level and temperature. Our research ng insights for improving the usefulness of a wide variety of BJC by various coatings." 
    more » « less
  4. This paper examines the impact of fire on the microstructural, mechanical, and corrosion behavior of wire-arc-sprayed zinc, aluminum, and Zn-Al pseudo-alloy coatings. Steel plates coated with these materials were subjected to temperatures in increments of 100 °C, starting from 300 °C and progressing until failure. Microstructural characterization, microhardness, abrasion resistance, and electrochemical impedance studies were performed on the post-fire coatings. The findings from this study show that heat had a positive impact on the performance of zinc and Zn-Al pseudo-alloy coatings when they were exposed to temperatures of up to 400 °C, while aluminum coatings maintain their performance up to 600 °C. However, above these temperatures, the effectiveness of coatings was observed to decline, due to increased high-temperature oxidation, and porosity, in addition to decreased microhardness, abrasion resistance, and corrosion protection performance. Based on the findings from this study, appropriately sealed thermal-spray-coated steel components can be reused after exposure to fire up to a specific temperature depending on the coating material. 
    more » « less
  5. Polymeric coatings can provide temporary stability to bioresorbable metallic stents at the initial stage of deployment by alleviating rapid degradation and providing better interaction with surrounding vasculature. To understand this interfacing biocompatibility, this study explored the endothelial-cytocompatibility of polymer-coated magnesium (Mg) alloys under static and dynamic conditions compared to that of non-coated Mg alloy surfaces. Poly (carbonate urethane) urea (PCUU) and poly (lactic-co-glycolic acid) (PLGA) were coated on Mg alloys (WE43, AZ31, ZWEKL, ZWEKC) and 316L stainless steel (316L SS, control sample), which were embedded into a microfluidic device to simulate a vascular environment with dynamic flow. The results from attachment and viability tests showed that more cells were attached on the polymer-coated Mg alloys than on non-coated Mg alloys in both static and dynamic conditions. In particular, the attachment and viability on PCUU-coated surfaces were significantly higher than that of PLGA-coated surfaces of WE43 and ZWEKC in both static and dynamic conditions, and of AZ31 in dynamic conditions (P<0.05). The elementary distribution map showed that there were relatively higher Carbon weight percentages and lower Mg weight percentages on PCUU-coated alloys than PLGA-coated alloys. Various levels of pittings were observed underneath the polymer coatings, and the pittings were more severe on the surface of Mg alloys that corroded rapidly. Polymer coatings are recommended to be applied on Mg alloys with relatively low corrosion rates, or after pre-stabilizing the substrate. PCUU-coating has more selective potential to enhance the biocompatibility and mitigate the endothelium damage of Mg alloy stenting. 
    more » « less