This study examined the influence of laboratory corrosion testing methods, specifically salt spray, and immersion tests, on the long-term performance assessment of wire-arc-sprayed Zn-Al coatings. Two Zn-Al alloyed systems, Zn-15Al and Zn-Al pseudo-alloy, were selected for investigation, subjecting them to 1000 h of immersion and salt spray conditions. Electrochemical impedance spectroscopy was used to monitor corrosion progression in both coating systems at 200-h intervals. Post-exposure, the coatings underwent microstructural and chemical characterization, along with potentiodynamic polarization tests. Furthermore, some specimens in both coating systems were intentionally damaged and exposed to 1000 h of salt spray and immersion testing and analyzed with scanning electron microscopy. Immersion testing yielded similar results for both coatings, while salt spray testing unveiled significant differences and highlighted the susceptibility of the Zn-15Al to salt spray in both undamaged and damaged states. The continuously refreshed salt spray electrolyte hindered stable corrosion product formation, allowing chloride penetration and increased corrosion in Zn-15Al. Conversely, the Zn-Al pseudo-alloy coating formed Al (OH)3, acting as a barrier against chloride penetration during salt spray and offering superior protection. In summary, salt spray testing proved more aggressive than immersion when evaluating Zn-Al coatings with high zinc content primarily relying on active dissolution for corrosion protection.
more »
« less
Post-Fire Analysis of Thermally Sprayed Coatings: Evaluating Microstructure, Mechanical Integrity, and Corrosion Behavior
This paper examines the impact of fire on the microstructural, mechanical, and corrosion behavior of wire-arc-sprayed zinc, aluminum, and Zn-Al pseudo-alloy coatings. Steel plates coated with these materials were subjected to temperatures in increments of 100 °C, starting from 300 °C and progressing until failure. Microstructural characterization, microhardness, abrasion resistance, and electrochemical impedance studies were performed on the post-fire coatings. The findings from this study show that heat had a positive impact on the performance of zinc and Zn-Al pseudo-alloy coatings when they were exposed to temperatures of up to 400 °C, while aluminum coatings maintain their performance up to 600 °C. However, above these temperatures, the effectiveness of coatings was observed to decline, due to increased high-temperature oxidation, and porosity, in addition to decreased microhardness, abrasion resistance, and corrosion protection performance. Based on the findings from this study, appropriately sealed thermal-spray-coated steel components can be reused after exposure to fire up to a specific temperature depending on the coating material.
more »
« less
- PAR ID:
- 10422257
- Date Published:
- Journal Name:
- Processes
- Volume:
- 11
- Issue:
- 5
- ISSN:
- 2227-9717
- Page Range / eLocation ID:
- 1490
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Coatings, either soft or hard, are commonly used to protect steel against corrosion for longer service life. With coatings, assessing the corrosion behavior and status of the substrate is challenging without destructive analysis. In this paper, fiber Bragg (FBG) grating sensors were proposed to nondestructively evaluate the corrosion behavior of steel coated with two popular coatings, including the polymeric and wire arc sprayed Al-Zn coating. Laboratory accelerated corrosion tests demonstrated that the embedded FBG sensors inside both the soft and hard coatings can effectively quantify the corrosion rate, monitor the corrosion progress, and detect the coating damages and crack propagation of coated steel in real time. The laboratory electrochemical corrosion test on the wire arc sprayed Al-Zn coating validated the proposed embedded FBG sensor method with a good agreement in comparison. The proposed sensing platform provides an alternative nondestructive real-time corrosion assessment approach for coated steel in the field.more » « less
-
Limongelli, Maria Pina; Ng, Ching Tai; Glisic, Branko (Ed.)Civil engineering structures are routinely exposed to corrosive environments, posing threats to their structural integrity. Traditional corrosion control methods often involve employing physical barriers, such as various coatings, to isolate the steel substrate from surrounding electrolytes. Among these methods, thermal spraying of alloy coatings has emerged as a prominent technique in safeguarding steel matrices against corrosion, particularly in industrial and marine settings. However, the inherent porosity of thermal spraying coatings compromises their corrosion resistance. Incorporating a polymer top layer offers a promising solution by sealing pores and augmenting overall performance. This study investigates corrosion on duplex-coated steel utilizing distributed fiber optic sensors based on optical frequency domain reflectometry. Experimental analyses involve embedding serpentine-arranged distributed fiber optic strain sensors within both thermal spraying layers and epoxy layers. Results demonstrate the efficiency of distributed sensors in identifying corrosion propagation paths by measuring the induced strain changes. Furthermore, the duplex coating exhibits significant enhancements in corrosion resistance for steel structures.more » « less
-
Austenitic and ferritic stainless-steel interlayers for resistance spot welding of an AlSi-coated 2000MPa UTS press-hardened boron steel and a 6022-T4 aluminum alloy were investigated to improve joint performance. CALPHAD and kinetic-based simulations were explored to determine the effects of Cr on the formation of Fe–Al intermetallic compounds. Selected area diffraction reveals the formation of FeCrAl9 along the interlayer-Al interface and suppresses the formation of FeAl3. The implementation of stainless-steel interlayers significantly improved the mechanical performance of the joint, with the 430 foil condition experiencing a substantial decrease in the Fe–Al intermetallic.more » « less
-
Abstract Additive Friction stir deposition (AFSD) has been extensively utilized for processing Al alloys. The properties of the Al depositions under as-fabricated state, including mechanical strength and corrosion resistance, are typically inferior compared to the base material, especially for heat-treatable alloys. In this research, multilayers of Al7075 composites, reinforced by ceramic particles, were processed by AFSD to evaluate the effect of using feedstock materials containing reinforcing particles on the properties of the deposition. For comparison, a bare Al7075 part was also processed by AFSD under the same conditions. The results of mechanical testing revealed a significant reduction in the microhardness, tensile strength and compression stress of the bare alloy after deposition. However, the composite deposition exhibited only a slight decrease in the properties compared to its feedstock material. Additionally, the corrosion resistance of the composite enhanced after AFSD, in contrast to the bare alloy, where the corrosion resistance deteriorated. Microstructural analysis showed a uniform distribution of the reinforcing particles in the matrix for the deposition, closely resembling that of the feedstock composite. This, along with grain refinement and minimal change in precipitates, were the reasons for the minimum changes in mechanical properties, as well as the improvement in corrosion resistance.more » « less
An official website of the United States government

