Abstract OH megamasers (OHMs) are extragalactic masers found primarily in gas-rich galaxy major mergers. To date, only ∼120 OHMs have been cataloged since their discovery in 1982, and efforts to identify distinct characteristics of OHM host galaxies have remained inconclusive. As radio astronomy advances with next-generation telescopes and extensive 21 cm Hisurveys, precursors to the Square Kilometre Array are expected to detect the 18 cm OH masing line with significantly increased frequency, potentially expanding the known OHM population tenfold. These detections, however, risk confusion with lower-redshift Hiemitters unless accompanied by independent spectroscopic redshifts. Building on methods proposed by Roberts et al. for distinguishing these interloping OHMs via near- to mid-IR photometry and emission line frequencies, we apply these techniques to data from the Arecibo Legacy Fast ALFA [AreciboL-band Feed Array] (ALFALFA) survey and a preliminary Aperture Tile In Focus (Apertif) Hiemission line catalog from the Westerbork Synthesis Radio Telescope. Our study, utilizing the Apache Point Observatory 3.5 m telescope to obtain optical spectroscopic redshifts of 142 candidates (107 from ALFALFA and 35 from Apertif), confirms five new OHM host galaxies and reidentifies two previously catalogued OHMs misclassified as Hiemitters in ALFALFA. These findings support the predictions from Roberts et al. and underscore the evolving landscape of radio astronomy in the context of next-generation telescopes.
more »
« less
Looking at the Distant Universe with the MeerKAT Array: Discovery of a Luminous OH Megamaser at z > 0.5
Abstract In the local universe, OH megamasers (OHMs) are detected almost exclusively in infrared-luminous galaxies, with a prevalence that increases with IR luminosity, suggesting that they trace gas-rich galaxy mergers. Given the proximity of the rest frequencies of OH and the hyperfine transition of neutral atomic hydrogen (Hi), radio surveys to probe the cosmic evolution of Hiin galaxies also offer exciting prospects for exploiting OHMs to probe the cosmic history of gas-rich mergers. Using observations for the Looking At the Distant Universe with the MeerKAT Array (LADUMA) deep Hisurvey, we report the first untargeted detection of an OHM atz> 0.5, LADUMA J033046.20−275518.1 (nicknamed “Nkalakatha”). The host system, WISEA J033046.26−275518.3, is an infrared-luminous radio galaxy whose optical redshiftz≈ 0.52 confirms the MeerKAT emission-line detection as OH at a redshiftzOH= 0.5225 ± 0.0001 rather than Hiat lower redshift. The detected spectral line has 18.4σpeak significance, a width of 459 ± 59 km s−1, and an integrated luminosity of (6.31 ± 0.18 [statistical] ± 0.31 [systematic]) × 103L⊙, placing it among the most luminous OHMs known. The galaxy’s far-infrared luminosityLFIR= (1.576 ±0.013) × 1012L⊙marks it as an ultraluminous infrared galaxy; its ratio of OH and infrared luminosities is similar to those for lower-redshift OHMs. A comparison between optical and OH redshifts offers a slight indication of an OH outflow. This detection represents the first step toward a systematic exploitation of OHMs as a tracer of galaxy growth at high redshifts.
more »
« less
- PAR ID:
- 10367384
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 931
- Issue:
- 1
- ISSN:
- 2041-8205
- Format(s):
- Medium: X Size: Article No. L7
- Size(s):
- Article No. L7
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present the discovery of neutral gas detected in both damped Lyαabsorption (DLA) and Hi21 cm emission outside of the stellar body of a galaxy, the first such detection in the literature. A joint analysis between the Cosmic Ultraviolet Baryon Survey and the MeerKAT Absorption Line Survey reveals an Hibridge connecting two interacting dwarf galaxies (log (Mstar/M⊙) = 8.5 ± 0.2) that host az= 0.026 DLA with log[N(Hi)/cm−2] = 20.60 ± 0.05 toward the QSO J2339−5523 (zQSO= 1.35). At impact parameters ofd= 6 and 33 kpc, the dwarf galaxies have no companions more luminous than ≈0.05L*within at least Δv= ±300 km s−1andd≈ 350 kpc. The Hi21 cm emission is spatially coincident with the DLA at the 2σ–3σlevel per spectral channel over several adjacent beams. However, Hi21 cm absorption is not detected against the radio-bright QSO; if the background UV and radio sources are spatially aligned, the gas is either warm or clumpy (with a spin temperature to covering factor ratioTs/fc> 1880 K). Observations with VLT-MUSE demonstrate that theα-element abundance of the ionized interstellar medium (ISM) is consistent with the DLA (≈10% solar), suggesting that the neutral gas envelope is perturbed ISM gas. This study showcases the impact of dwarf–dwarf interactions on the physical and chemical state of neutral gas outside of star-forming regions. In the SKA era, joint UV and Hi21 cm analyses will be critical for connecting the cosmic neutral gas content to galaxy environments.more » « less
-
Abstract We report statistically significant detection of Hi21 cm emission from intermediate-redshift (z ≈ 0.2–0.6) galaxies. By leveraging multisightline galaxy survey data from the Cosmic Ultraviolet Baryon Survey and deep radio observations from the MeerKAT Absorption Line Survey, we have established a sample of ≈6000 spectroscopically identified galaxies in 11 distinct fields to constrain the neutral gas content at intermediate redshifts. The galaxies sample a broad range in stellar mass, from to , with a median of and a wide range in redshift fromz ≈ 0.24 toz ≈ 0.63 with a median of 〈z〉med = 0.44. While no individual galaxies show detectable Hiemission, the emission line signal is detected in the stacked spectra of all subsamples at greater than 4σsignificance. The observed total Hi21 cm line flux translates to a Himass,MH I≈1010M⊙. We find a high Hi-to-stellar-mass ratio ofMHI/Mstar ≈ 6 for low-mass galaxies with (>3.7σ). For galaxies with , we findMHI/Mstar ≈ 0.3 (>4.7σ). In addition, the redshift evolution of Himass, 〈MH I〉, in both low- and high-mass field galaxies, inferred from the stacked emission-line signal, aligns well with the expectation from the cosmic star formation history. This suggests that the overall decline in the cosmic star formation activity across the general galaxy population may be connected to a decreasing supply of neutral hydrogen. Finally, our analysis has revealed significant 21 cm signals at distances greater than 75 kpc from these intermediate-redshift galaxies, indicating a substantial reservoir of Higas in their extended surroundings.more » « less
-
Abstract Identification and follow-up observations of the host galaxies of fast radio bursts (FRBs) not only help us understand the environments in which the FRB progenitors reside, but also provide a unique way of probing the cosmological parameters using the dispersion measures (DMs) of FRBs and distances to their origin. A fundamental requirement is an accurate distance measurement to the FRB host galaxy, but for some sources viewed through the Galactic plane, optical/near-infrared spectroscopic redshifts are extremely difficult to obtain due to dust extinction. Here we report the first radio-based spectroscopic redshift measurement for an FRB host galaxy, through detection of its neutral hydrogen (Hi) 21 cm emission using MeerKAT observations. We obtain an Hi–based redshift ofz= 0.0357 ± 0.0001 for the host galaxy of FRB 20230718A, an apparently nonrepeating FRB detected in the Commensal Real-time ASKAP Fast Transients survey and localized at a Galactic latitude of –0.°367. Our observations also reveal that the FRB host galaxy is interacting with a nearby companion, which is evident from the detection of an Hibridge connecting the two galaxies. A subsequent optical spectroscopic observation confirmed an FRB host galaxy redshift of 0.0359 ± 0.0004. This result demonstrates the value of Hito obtain redshifts of FRBs at low Galactic latitudes and redshifts. Such nearby FRBs whose DMs are dominated by the Milky Way can be used to characterize these components and thus better calibrate the remaining cosmological contribution to dispersion for more distant FRBs that provide a strong lever arm to examine the Macquart relation between cosmological DM and redshift.more » « less
-
Abstract Dual quasars—two active supermassive black holes at galactic scales—represent crucial objects for studying the impact of galaxy mergers and quasar activity on the star formation rate (SFR) within their host galaxies, particularly at cosmic noon when SFR peaks. We present JWST/MIRI mid-infrared integral field spectroscopy of J074922.96+225511.7, a dual quasar with a projected separation of 3.8 kpc at a redshiftz= 2.17. We detect spatially extended [Feii] 5.34μm and polycyclic aromatic hydrocarbon (PAH) 3.3μm emissions from the star formation activity in its host galaxy. We derive the SFR of 103.0±0.2M⊙yr−1using PAH 3.3μm, which is 5 times higher than that derived from the knee of the infrared luminosity function for galaxies atz∼ 2. While the SFR of J0749+2255 agrees with that of star-forming galaxies of comparable stellar mass at the same redshifts, its molecular gas content falls short of expectations based on the molecular Kennicutt–Schmidt law. This discrepancy may result from molecular gas depletion due to the longer elevated stage of star formation, even after the molecular gas reservoir is depleted. We do not observe any quasar-driven outflow that impacts PAH and [Feii] in the host galaxy based on the spatially resolved maps. From the expected flux in PAH-based star formation, the [Feii] line likely originates from the star-forming regions in the host galaxy. Our study highlights the extreme stardust nature of J0749+2255, indicating a potential connection between the dual quasar phase and intense star formation activities.more » « less
An official website of the United States government
