We present the discovery of neutral gas detected in both damped Ly
In the local universe, OH megamasers (OHMs) are detected almost exclusively in infrared-luminous galaxies, with a prevalence that increases with IR luminosity, suggesting that they trace gas-rich galaxy mergers. Given the proximity of the rest frequencies of OH and the hyperfine transition of neutral atomic hydrogen (H
- NSF-PAR ID:
- 10367384
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 931
- Issue:
- 1
- ISSN:
- 2041-8205
- Format(s):
- Medium: X Size: Article No. L7
- Size(s):
- Article No. L7
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract α absorption (DLA) and Hi 21 cm emission outside of the stellar body of a galaxy, the first such detection in the literature. A joint analysis between the Cosmic Ultraviolet Baryon Survey and the MeerKAT Absorption Line Survey reveals an Hi bridge connecting two interacting dwarf galaxies (log (M star/M ⊙) = 8.5 ± 0.2) that host az = 0.026 DLA with log[N (Hi )/cm−2] = 20.60 ± 0.05 toward the QSO J2339−5523 (z QSO= 1.35). At impact parameters ofd = 6 and 33 kpc, the dwarf galaxies have no companions more luminous than ≈0.05L *within at least Δv = ±300 km s−1andd ≈ 350 kpc. The Hi 21 cm emission is spatially coincident with the DLA at the 2σ –3σ level per spectral channel over several adjacent beams. However, Hi 21 cm absorption is not detected against the radio-bright QSO; if the background UV and radio sources are spatially aligned, the gas is either warm or clumpy (with a spin temperature to covering factor ratioT s /f c > 1880 K). Observations with VLT-MUSE demonstrate that theα -element abundance of the ionized interstellar medium (ISM) is consistent with the DLA (≈10% solar), suggesting that the neutral gas envelope is perturbed ISM gas. This study showcases the impact of dwarf–dwarf interactions on the physical and chemical state of neutral gas outside of star-forming regions. In the SKA era, joint UV and Hi 21 cm analyses will be critical for connecting the cosmic neutral gas content to galaxy environments. -
Abstract Identification and follow-up observations of the host galaxies of fast radio bursts (FRBs) not only help us understand the environments in which the FRB progenitors reside, but also provide a unique way of probing the cosmological parameters using the dispersion measures (DMs) of FRBs and distances to their origin. A fundamental requirement is an accurate distance measurement to the FRB host galaxy, but for some sources viewed through the Galactic plane, optical/near-infrared spectroscopic redshifts are extremely difficult to obtain due to dust extinction. Here we report the first radio-based spectroscopic redshift measurement for an FRB host galaxy, through detection of its neutral hydrogen (H
i ) 21 cm emission using MeerKAT observations. We obtain an Hi –based redshift ofz = 0.0357 ± 0.0001 for the host galaxy of FRB 20230718A, an apparently nonrepeating FRB detected in the Commensal Real-time ASKAP Fast Transients survey and localized at a Galactic latitude of –0.°367. Our observations also reveal that the FRB host galaxy is interacting with a nearby companion, which is evident from the detection of an Hi bridge connecting the two galaxies. A subsequent optical spectroscopic observation confirmed an FRB host galaxy redshift of 0.0359 ± 0.0004. This result demonstrates the value of Hi to obtain redshifts of FRBs at low Galactic latitudes and redshifts. Such nearby FRBs whose DMs are dominated by the Milky Way can be used to characterize these components and thus better calibrate the remaining cosmological contribution to dispersion for more distant FRBs that provide a strong lever arm to examine the Macquart relation between cosmological DM and redshift. -
Abstract We investigate the group-scale environment of 15 luminous quasars (luminosity
L 3000> 1046erg s−1) from the Cosmic Ultraviolet Baryon Survey (CUBS) at redshiftz ≈ 1. Using the Multi Unit Spectroscopic Explorer integral field spectrograph on the Very Large Telescope, we conduct a deep galaxy redshift survey in the CUBS quasar fields to identify group members and measure the physical properties of individual galaxies and galaxy groups. We find that the CUBS quasars reside in diverse environments. The majority (11 out of 15) of the CUBS quasars reside in overdense environments with typical halo masses exceeding 1013M ⊙, while the remaining quasars reside in moderate-size galaxy groups. No correlation is observed between overdensity and redshift, black hole (BH) mass, or luminosity. Radio-loud quasars (5 out of 15 CUBS quasars) are more likely to be in overdense environments than their radio-quiet counterparts in the sample, consistent with the mean trends from previous statistical observations and clustering analyses. Nonetheless, we also observe radio-loud quasars in moderate groups and radio-quiet quasars in overdense environments, indicating a large scatter in the connection between radio properties and environment. We find that the most UV luminous quasars might be outliers in the stellar mass-to-halo mass relations or may represent departures from the standard single-epoch BH relations. -
Abstract Dual quasars—two active supermassive black holes at galactic scales—represent crucial objects for studying the impact of galaxy mergers and quasar activity on the star formation rate (SFR) within their host galaxies, particularly at cosmic noon when SFR peaks. We present JWST/MIRI mid-infrared integral field spectroscopy of J074922.96+225511.7, a dual quasar with a projected separation of 3.8 kpc at a redshift
z = 2.17. We detect spatially extended [Feii ] 5.34μ m and polycyclic aromatic hydrocarbon (PAH) 3.3μ m emissions from the star formation activity in its host galaxy. We derive the SFR of 103.0±0.2M ⊙yr−1using PAH 3.3μ m, which is 5 times higher than that derived from the knee of the infrared luminosity function for galaxies atz ∼ 2. While the SFR of J0749+2255 agrees with that of star-forming galaxies of comparable stellar mass at the same redshifts, its molecular gas content falls short of expectations based on the molecular Kennicutt–Schmidt law. This discrepancy may result from molecular gas depletion due to the longer elevated stage of star formation, even after the molecular gas reservoir is depleted. We do not observe any quasar-driven outflow that impacts PAH and [Feii ] in the host galaxy based on the spatially resolved maps. From the expected flux in PAH-based star formation, the [Feii ] line likely originates from the star-forming regions in the host galaxy. Our study highlights the extreme stardust nature of J0749+2255, indicating a potential connection between the dual quasar phase and intense star formation activities. -
Abstract We present the first active galactic nuclei (AGN) catalog of the Hobby–Eberly Telescope Dark Energy Experiment Survey (HETDEX) observed between 2017 January and 2020 June. HETDEX is an ongoing spectroscopic survey (3500–5500 Å) with no target preselection based on magnitudes, colors or morphologies, enabling us to select AGN based solely on their spectral features. Both luminous quasars and low-luminosity Seyferts are found in our catalog. AGN candidates are selected with at least two significant AGN emission lines, such as the Ly
α and Civ λ 1549 line pair, or with a single broad emission line with FWHM > 1000 km s−1. Each source is further confirmed by visual inspections. This catalog contains 5322 AGN, covering an effective sky coverage of 30.61 deg2. A total of 3733 of these AGN have secure redshifts, and we provide redshift estimates for the remaining 1589 single broad-line AGN with no crossmatched spectral redshifts from the Sloan Digital Sky Survey Data Release 14 of QSOs. The redshift range of the AGN catalog is 0.25 <z < 4.32, with a median ofz = 2.1. The bolometric luminosity range is 109–1014L ☉with a median of 1012L ☉. The medianr -band magnitude of our AGN catalog is 21.6 mag, with 34% havingr > 22.5, and 2.6% reaching the detection limit atr ∼ 26 mag of the deepest imaging surveys we searched. We also provide a composite spectrum of the AGN sample covering 700–4400 Å.