Measuring the properties of the cold neutral medium (CNM) in low-metallicity galaxies provides insights into heating and cooling mechanisms in early Universe-like environments. We report detections of two localized atomic neutral hydrogen (H
We present the discovery of neutral gas detected in both damped Ly
- PAR ID:
- 10363193
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 926
- Issue:
- 2
- ISSN:
- 2041-8205
- Format(s):
- Medium: X Size: Article No. L33
- Size(s):
- Article No. L33
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract i ) absorption features in NGC 6822, a low-metallicity (0.2Z ⊙) dwarf galaxy in the Local Group. These are the first unambiguous CNM detections in a low-metallicity dwarf galaxy outside the Magellanic Clouds. The Local GroupL -band Survey (LGLBS) enabled these detections, due to its high spatial (15 pc for Hi emission) and spectral (0.4 km s−1) resolution. We introduce LGLBS and describe a custom pipeline for searching for Hi absorption at high angular resolution and extracting associated Hi emission. A detailed Gaussian decomposition and radiative transfer analysis of the NGC 6822 detections reveals five CNM components, with key properties: a mean spin temperature of 32 ± 6 K, a mean CNM column density of 3.1 × 1020cm−2, and CNM mass fractions of 0.33 and 0.12 for the two sightlines. Stacking nondetections does not reveal low-level signals below our median optical depth sensitivity of 0.05. One detection intercepts a star-forming region, with the Hi absorption profile encompassing the CO (2−1) emission, indicating coincident molecular gas and a depression in high-resolution Hi emission. We also analyze a nearby sightline with deep, narrow Hi self-absorption dips, where the background warm neutral medium is attenuated by intervening CNM. The association of CNM, CO, and Hα emissions suggests a close link between the colder, denser Hi phase and star formation in NGC 6822. -
Abstract We report Hubble Space Telescope Cosmic Origins Spectrograph spectroscopy of 10 quasars with foreground star-forming galaxies at 0.02 < z < 0.14 within impact parameters of ∼1–7 kpc. We detect damped/sub-damped Ly α (DLA/sub-DLA) absorption in 100% of cases where no higher-redshift Lyman-limit systems extinguish the flux at the expected wavelength of Ly α absorption, obtaining the largest targeted sample of DLA/sub-DLAs in low-redshift galaxies. We present absorption measurements of neutral hydrogen and metals. Additionally, we present Green Bank Telescope 21 cm emission measurements for five of the galaxies (including two detections). Combining our sample with the literature, we construct a sample of 117 galaxies associated with DLA/sub-DLAs spanning 0 < z < 4.4, and examine trends between gas and stellar properties, and with redshift. The H i column density is anticorrelated with impact parameter and stellar mass. More massive galaxies appear to have gas-rich regions out to larger distances. The specific star formation rate (sSFR) of absorbing galaxies increases with redshift and decreases with M *, consistent with evolution of the star formation main sequence (SFMS). However, ∼20% of absorbing galaxies lie below the SFMS, indicating that some DLA/sub-DLAs trace galaxies with longer-than-typical gas-depletion timescales. Most DLA/sub-DLA galaxies with 21 cm emission have higher H i masses than typical galaxies with comparable M *. High M HI / M * ratios and high sSFRs in DLA/sub-DLA galaxies with M * < 10 9 M ⊙ suggest these galaxies may be gas-rich because of recent gas accretion rather than inefficient star formation. Our study demonstrates the power of absorption and emission studies of DLA/sub-DLA galaxies for extending galactic evolution studies to previously under-explored regimes of low M * and low SFR.more » « less
-
Abstract We report a Giant Metrewave Radio Telescope
21 cm mapping study of the neutral atomic hydrogen (H i ) in the host galaxy of the fast radio burst (FRB) FRB 20180916B atz ≈ 0.03399. We find that the FRB host has an Hi mass ofM Hi = (2.74 ± 0.33) × 109M ⊙and a high Hi to stellar mass ratio, ≈1.3. The FRB host is thus a gas-rich but near-quiescent galaxy that is likely to have acquired a significant mass of Hi in the recent past. The Hi distribution is disturbed, with extended Hi 21 cm emission detected in a northeastern tail, a counter-tail toward the south, an Hi hole between the galaxy center and the FRB location, and a high Hi column density measured close to the FRB position. The FRB host is part of a group with four companions detected in their Hi 21 cm emission, the nearest of which is only 22 kpc from the FRB location. The gas richness and disturbed Hi distribution indicate that the FRB host has recently undergone a minor merger, which increased its Hi mass, disturbed the Hi in the galaxy disk, and compressed the Hi near the FRB location to increase its surface density. We propose that this merger caused the burst of star formation in the outskirts of the galaxy that gave rise to the FRB progenitor. The evidence for a minor merger is consistent with scenarios in which the FRB progenitor is a massive star, formed due to the merger event. -
Abstract We present Keck Cosmic Web Imager Ly
α integral field spectroscopy of the fields surrounding 14 damped Lyα absorbers (DLAs) atz ≈ 2. Of these 14 DLAs, nine have high metallicities ([M/H] > − 0.3), and four of those nine feature a CO-emitting galaxy at an impact parameter ≲30 kpc. Our search reaches median Lyα line flux sensitivities of ∼2 × 10−17erg s−1cm−2over apertures of ∼6 kpc and out to impact parameters of ∼50 kpc. We recover the Lyα flux of three known Lyα -emitting Hi -selected galaxies in our sample. In addition, we find two Lyα emitters at impact parameters of ≈50–70 kpc from the high-metallicity DLA atz ≈ 1.96 toward QSO B0551-366. This field also contains a massive CO-emitting galaxy at an impact parameter of ≈15 kpc. Apart from the field with QSO B0551-366, we do not detect significant Lyα emission in any of the remaining eight high-metallicity DLA fields. Considering the depth of our observations and our ability to recover previously known Lyα emitters, we conclude that Hi -selected galaxies associated with high-metallicity DLAs atz ≈ 2 are dusty and therefore might feature low Lyα escape fractions. Our results indicate that complementary approaches—using Lyα , CO, Hα , and [Cii ] 158μ m emission—are necessary to identify the wide range of galaxy types associated withz ≈ 2 DLAs. -
Abstract We use medium- and high-resolution spectroscopy of close pairs of quasars to analyze the circumgalactic medium (CGM) surrounding 32 damped Ly
α absorption systems (DLAs). The primary quasar sightline in each pair probes an intervening DLA in the redshift range 1.6 <z abs< 3.5, such that the secondary sightline probes absorption from Lyα and a large suite of metal-line transitions (including Oi , Cii , Civ , Siii , and Siiv ) in the DLA host galaxy’s CGM at transverse distances 24 kpc ≤R ⊥≤ 284 kpc. Analysis of Lyα in the CGM sightlines shows an anticorrelation betweenR ⊥and Hi column density (N HI) with 99.8% confidence, similar to that observed around luminous galaxies. The incidences of Cii and Siii withN > 1013cm−2within 100 kpc of DLAs are larger by 2σ than those measured in the CGM of Lyman break galaxies (Cf (N CII ) > 0.89 and ). Metallicity constraints derived from ionic ratios for nine CGM systems with negligible ionization corrections andN HI> 1018.5cm−2show a significant degree of scatter (with metallicities/limits across the range ), suggesting inhomogeneity in the metal distribution in these environments. Velocity widths of Civ λ 1548 and low-ionization metal species in the DLA versus CGM sightlines are strongly (>2σ ) correlated, suggesting that they trace the potential well of the host halo overR ⊥≲ 300 kpc scales. At the same time, velocity centroids for Civ λ 1548 differ in DLA versus CGM sightlines by >100 km s−1for ∼50% of velocity components, but few components have velocities that would exceed the escape velocity assuming dark matter host halos of ≥1012M ⊙.