skip to main content


Title: Recovery of sums of sparse and dense signals by incorporating graphical structure among predictors

With the abundance of high‐dimensional data, sparse regularization techniques are very popular in practice because of the built‐in sparsity of their corresponding estimators. However, the success of sparse methods heavily relies on the assumption of sparsity in the underlying model. For models where the sparsity assumption fails, the performance of these sparse methods can be unsatisfactory and misleading. In this article, we consider the perturbed linear model, where the signal is given by the sum of sparse and dense signals. We propose a new penalization‐based method, called Gava, to tackle this kind of signal by making use of a graphical structure among model predictors. The proposed Gava method covers several existing methods as special cases. Our numerical examples and theoretical studies demonstrate the effectiveness of the proposed Gava for estimation and prediction.

 
more » « less
NSF-PAR ID:
10367433
Author(s) / Creator(s):
 ;  ;
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Canadian Journal of Statistics
Volume:
50
Issue:
2
ISSN:
0319-5724
Page Range / eLocation ID:
p. 471-490
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In this paper, we propose a new framework to construct confidence sets for a $d$-dimensional unknown sparse parameter ${\boldsymbol \theta }$ under the normal mean model ${\boldsymbol X}\sim N({\boldsymbol \theta },\sigma ^{2}\bf{I})$. A key feature of the proposed confidence set is its capability to account for the sparsity of ${\boldsymbol \theta }$, thus named as sparse confidence set. This is in sharp contrast with the classical methods, such as the Bonferroni confidence intervals and other resampling-based procedures, where the sparsity of ${\boldsymbol \theta }$ is often ignored. Specifically, we require the desired sparse confidence set to satisfy the following two conditions: (i) uniformly over the parameter space, the coverage probability for ${\boldsymbol \theta }$ is above a pre-specified level; (ii) there exists a random subset $S$ of $\{1,...,d\}$ such that $S$ guarantees the pre-specified true negative rate for detecting non-zero $\theta _{j}$’s. To exploit the sparsity of ${\boldsymbol \theta }$, we allow the confidence interval for $\theta _{j}$ to degenerate to a single point 0 for any $j\notin S$. Under this new framework, we first consider whether there exist sparse confidence sets that satisfy the above two conditions. To address this question, we establish a non-asymptotic minimax lower bound for the non-coverage probability over a suitable class of sparse confidence sets. The lower bound deciphers the role of sparsity and minimum signal-to-noise ratio (SNR) in the construction of sparse confidence sets. Furthermore, under suitable conditions on the SNR, a two-stage procedure is proposed to construct a sparse confidence set. To evaluate the optimality, the proposed sparse confidence set is shown to attain a minimax lower bound of some properly defined risk function up to a constant factor. Finally, we develop an adaptive procedure to the unknown sparsity. Numerical studies are conducted to verify the theoretical results.

     
    more » « less
  2. Abstract

    Sparsity finds applications in diverse areas such as statistics, machine learning, and signal processing. Computations over sparse structures are less complex compared to their dense counterparts and need less storage. This paper proposes a heuristic method for retrieving sparse approximate solutions of optimization problems via minimizing the$$\ell _{p}$$pquasi-norm, where$$00<p<1. An iterative two-block algorithm for minimizing the$$\ell _{p}$$pquasi-norm subject to convex constraints is proposed. The proposed algorithm requires solving for the roots of a scalar degree polynomial as opposed to applying a soft thresholding operator in the case of$$\ell _{1}$$1norm minimization. The algorithm’s merit relies on its ability to solve the$$\ell _{p}$$pquasi-norm minimization subject to any convex constraints set. For the specific case of constraints defined by differentiable functions with Lipschitz continuous gradient, a second, faster algorithm is proposed. Using a proximal gradient step, we mitigate the convex projection step and hence enhance the algorithm’s speed while proving its convergence. We present various applications where the proposed algorithm excels, namely, sparse signal reconstruction, system identification, and matrix completion. The results demonstrate the significant gains obtained by the proposed algorithm compared to other$$\ell _{p}$$pquasi-norm based methods presented in previous literature.

     
    more » « less
  3. Since the cost of labeling data is getting higher and higher, we hope to make full use of the large amount of unlabeled data and improve image classification effect through adding some unlabeled samples for training. In addition, we expect to uniformly realize two tasks, namely the clustering of the unlabeled data and the recognition of the query image. We achieve the goal by designing a novel sparse model based on manifold assumption, which has been proved to work well in many tasks. Based on the assumption that images of the same class lie on a sub-manifold and an image can be approximately represented as the linear combination of its neighboring data due to the local linear property of manifold, we proposed a sparse representation model on manifold. Specifically, there are two regularizations, i.e., a variant Trace lasso norm and the manifold Laplacian regularization. The first regularization term enables the representation coefficients satisfying sparsity between groups and density within a group. And the second term is manifold Laplacian regularization by which label can be accurately propagated from labeled data to unlabeled data. Augmented Lagrange Multiplier (ALM) scheme and Gauss Seidel Alternating Direction Method of Multiplier (GS-ADMM) are given to solve the problem numerically. We conduct some experiments on three human face databases and compare the proposed work with several state-of-the-art methods. For each subject, some labeled face images are randomly chosen for training for those supervised methods, and a small amount of unlabeled images are added to form the training set of the proposed approach. All experiments show our method can get better classification results due to the addition of unlabeled samples. 
    more » « less
  4. Summary

    Modern technologies are producing a wealth of data with complex structures. For instance, in two-dimensional digital imaging, flow cytometry and electroencephalography, matrix-type covariates frequently arise when measurements are obtained for each combination of two underlying variables. To address scientific questions arising from those data, new regression methods that take matrices as covariates are needed, and sparsity or other forms of regularization are crucial owing to the ultrahigh dimensionality and complex structure of the matrix data. The popular lasso and related regularization methods hinge on the sparsity of the true signal in terms of the number of its non-zero coefficients. However, for the matrix data, the true signal is often of, or can be well approximated by, a low rank structure. As such, the sparsity is frequently in the form of low rank of the matrix parameters, which may seriously violate the assumption of the classical lasso. We propose a class of regularized matrix regression methods based on spectral regularization. A highly efficient and scalable estimation algorithm is developed, and a degrees-of-freedom formula is derived to facilitate model selection along the regularization path. Superior performance of the method proposed is demonstrated on both synthetic and real examples.

     
    more » « less
  5. We develop a projected Nesterov’s proximal-gradient (PNPG) scheme for reconstructing sparse signals from compressive Poisson-distributed measurements with the mean signal intensity that follows an affine model with known intercept. The objective function to be minimized is a sum of convex data fidelity (negative log-likelihood (NLL)) and regularization terms. We apply sparse signal regularization where the signal belongs to a nonempty closed convex set within the domain of the NLL and signal sparsity is imposed using total-variation (TV) penalty. We present analytical upper bounds on the regularization tuning constant. The proposed PNPG method employs projected Nesterov’s acceleration step, function restart, and an adaptive step-size selection scheme that aims at obtaining a good local majorizing function of the NLL and reducing the time spent backtracking. We establish O(k⁻²) convergence of the PNPG method with step-size backtracking only and no restart. Numerical examples demonstrate the performance of the PNPG method. 
    more » « less