skip to main content


Title: Calibration after bootstrap for accurate uncertainty quantification in regression models
Abstract

Obtaining accurate estimates of machine learning model uncertainties on newly predicted data is essential for understanding the accuracy of the model and whether its predictions can be trusted. A common approach to such uncertainty quantification is to estimate the variance from an ensemble of models, which are often generated by the generally applicable bootstrap method. In this work, we demonstrate that the direct bootstrap ensemble standard deviation is not an accurate estimate of uncertainty but that it can be simply calibrated to dramatically improve its accuracy. We demonstrate the effectiveness of this calibration method for both synthetic data and numerous physical datasets from the field of Materials Science and Engineering. The approach is motivated by applications in physical and biological science but is quite general and should be applicable for uncertainty quantification in a wide range of machine learning regression models.

 
more » « less
Award ID(s):
1931298
NSF-PAR ID:
10367457
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Computational Materials
Volume:
8
Issue:
1
ISSN:
2057-3960
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Brehm, Christoph ; Pandya, Shishir (Ed.)
    Computational fluid dynamics (CFD) and its uncertainty quantification are computationally expensive. We use Gaussian Process (GP) methods to demonstrate that machine learning can build efficient and accurate surrogate models to replace CFD simulations with significantly reduced computational cost without compromising the physical accuracy. We also demonstrate that both epistemic uncertainty (machine learning model uncertainty) and aleatory uncertainty (randomness in the inputs of CFD) can be accommodated when the machine learning model is used to reveal fluid dynamics. The demonstration is performed by applying simulation of Hagen-Poiseuille and Womersley flows that involve spatial and spatial-tempo responses, respectively. Training points are generated by using the analytical solutions with evenly discretized spatial or spatial-temporal variables. Then GP surrogate models are built using supervised machine learning regression. The error of the GP model is quantified by the estimated epistemic uncertainty. The results are compared with those from GPU-accelerated volumetric lattice Boltzmann simulations. The results indicate that surrogate models can produce accurate fluid dynamics (without CFD simulations) with quantified uncertainty when both epistemic and aleatory uncertainties exist. 
    more » « less
  2. Abstract

    A hybrid data assimilation algorithm is developed for complex dynamical systems with partial observations. The method starts with applying a spectral decomposition to the entire spatiotemporal fields, followed by creating a machine learning model that builds a nonlinear map between the coefficients of observed and unobserved state variables for each spectral mode. A cheap low‐order nonlinear stochastic parameterized extended Kalman filter (SPEKF) model is employed as the forecast model in the ensemble Kalman filter to deal with each mode associated with the observed variables. The resulting ensemble members are then fed into the machine learning model to create an ensemble of the corresponding unobserved variables. In addition to the ensemble spread, the training residual in the machine learning‐induced nonlinear map is further incorporated into the state estimation, advancing the diagnostic quantification of the posterior uncertainty. The hybrid data assimilation algorithm is applied to a precipitating quasi‐geostrophic (PQG) model, which includes the effects of water vapor, clouds, and rainfall beyond the classical two‐level QG model. The complicated nonlinearities in the PQG equations prevent traditional methods from building simple and accurate reduced‐order forecast models. In contrast, the SPEKF forecast model is skillful in recovering the intermittent observed states, and the machine learning model effectively estimates the chaotic unobserved signals. Utilizing the calibrated SPEKF and machine learning models under a moderate cloud fraction, the resulting hybrid data assimilation remains reasonably accurate when applied to other geophysical scenarios with nearly clear skies or relatively heavy rainfall, implying the robustness of the algorithm for extrapolation.

     
    more » « less
  3. Abstract

    For data assimilation to provide faithful state estimates for dynamical models, specifications of observation uncertainty need to be as accurate as possible. Innovation-based methods based on Desroziers diagnostics, are commonly used to estimate observation uncertainty, but such methods can depend greatly on the prescribed background uncertainty. For ensemble data assimilation, this uncertainty comes from statistics calculated from ensemble forecasts, which require inflation and localization to address under sampling. In this work, we use an ensemble Kalman filter (EnKF) with a low-dimensional Lorenz model to investigate the interplay between the Desroziers method and inflation. Two inflation techniques are used for this purpose: 1) a rigorously tuned fixed multiplicative scheme and 2) an adaptive state-space scheme. We document how inaccuracies in observation uncertainty affect errors in EnKF posteriors and study the combined impacts of misspecified initial observation uncertainty, sampling error, and model error on Desroziers estimates. We find that whether observation uncertainty is over- or underestimated greatly affects the stability of data assimilation and the accuracy of Desroziers estimates and that preference should be given to initial overestimates. Inline estimates of Desroziers tend to remove the dependence between ensemble spread–skill and the initially prescribed observation error. In addition, we find that the inclusion of model error introduces spurious correlations in observation uncertainty estimates. Further, we note that the adaptive inflation scheme is less robust than fixed inflation at mitigating multiple sources of error. Last, sampling error strongly exacerbates existing sources of error and greatly degrades EnKF estimates, which translates into biased Desroziers estimates of observation error covariance.

    Significance Statement

    To generate accurate predictions of various components of the Earth system, numerical models require an accurate specification of state variables at our current time. This step adopts a probabilistic consideration of our current state estimate versus information provided from environmental measurements of the true state. Various strategies exist for estimating uncertainty in observations within this framework, but are sensitive to a host of assumptions, which are investigated in this study.

     
    more » « less
  4. Abstract

    Parameters in climate models are usually calibrated manually, exploiting only small subsets of the available data. This precludes both optimal calibration and quantification of uncertainties. Traditional Bayesian calibration methods that allow uncertainty quantification are too expensive for climate models; they are also not robust in the presence of internal climate variability. For example, Markov chain Monte Carlo (MCMC) methods typically requiremodel runs and are sensitive to internal variability noise, rendering them infeasible for climate models. Here we demonstrate an approach to model calibration and uncertainty quantification that requires onlymodel runs and can accommodate internal climate variability. The approach consists of three stages: (a) a calibration stage uses variants of ensemble Kalman inversion to calibrate a model by minimizing mismatches between model and data statistics; (b) an emulation stage emulates the parameter‐to‐data map with Gaussian processes (GP), using the model runs in the calibration stage for training; (c) a sampling stage approximates the Bayesian posterior distributions by sampling the GP emulator with MCMC. We demonstrate the feasibility and computational efficiency of this calibrate‐emulate‐sample (CES) approach in a perfect‐model setting. Using an idealized general circulation model, we estimate parameters in a simple convection scheme from synthetic data generated with the model. The CES approach generates probability distributions of the parameters that are good approximations of the Bayesian posteriors, at a fraction of the computational cost usually required to obtain them. Sampling from this approximate posterior allows the generation of climate predictions with quantified parametric uncertainties.

     
    more » « less
  5. Abstract

    Long‐lead forecasting for spatio‐temporal systems can entail complex nonlinear dynamics that are difficult to specify a priori. Current statistical methodologies for modeling these processes are often highly parameterized and, thus, challenging to implement from a computational perspective. One potential parsimonious solution to this problem is a method from the dynamical systems and engineering literature referred to as an echo state network (ESN). ESN models usereservoir computingto efficiently compute recurrent neural network forecasts. Moreover, multilevel (deep) hierarchical models have recently been shown to be successful at predicting high‐dimensional complex nonlinear processes, particularly those with multiple spatial and temporal scales of variability (such as those we often find in spatio‐temporal environmental data). Here, we introduce a deep ensemble ESN (D‐EESN) model. Despite the incorporation of a deep structure, the presented model is computationally efficient. We present two versions of this model for spatio‐temporal processes that produce forecasts and associated measures of uncertainty. The first approach utilizes a bootstrap ensemble framework, and the second is developed within a hierarchical Bayesian framework (BD‐EESN). This more general hierarchical Bayesian framework naturally accommodates non‐Gaussian data types and multiple levels of uncertainties. The methodology is first applied to a data set simulated from a novel non‐Gaussian multiscale Lorenz‐96 dynamical system simulation model and, then, to a long‐lead United States (U.S.) soil moisture forecasting application. Across both applications, the proposed methodology improves upon existing methods in terms of both forecast accuracy and quantifying uncertainty.

     
    more » « less