skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.

Search for: All records

Award ID contains: 1931298

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Electron counting can be performed algorithmically for monolithic active pixel sensor direct electron detectors to eliminate readout noise and Landau noise arising from the variability in the amount of deposited energy for each electron. Errors in existing counting algorithms include mistakenly counting a multielectron strike as a single electron event, and inaccurately locating the incident position of the electron due to lateral spread of deposited energy and dark noise. Here, we report a supervised deep learning (DL) approach based on Faster region-based convolutional neural network (R-CNN) to recognize single electron events at varying electron doses and voltages. The DL approach shows high accuracy according to the near-ideal modulation transfer function (MTF) and detector quantum efficiency for sparse images. It predicts, on average, 0.47 pixel deviation from the incident positions for 200 kV electrons versus 0.59 pixel using the conventional counting method. The DL approach also shows better robustness against coincidence loss as the electron dose increases, maintaining the MTF at half Nyquist frequency above 0.83 as the electron density increases to 0.06 e−/pixel. Thus, the DL model extends the advantages of counting analysis to higher dose rates than conventional methods.

    more » « less
    Free, publicly-accessible full text available December 8, 2024
  2. Graphical abstract 
    more » « less
  3. Abstract

    A concise and measurable set of FAIR (Findable, Accessible, Interoperable and Reusable) principles for scientific data is transforming the state-of-practice for data management and stewardship, supporting and enabling discovery and innovation. Learning from this initiative, and acknowledging the impact of artificial intelligence (AI) in the practice of science and engineering, we introduce a set of practical, concise, and measurable FAIR principles for AI models. We showcase how to create and share FAIR data and AI models within a unified computational framework combining the following elements: the Advanced Photon Source at Argonne National Laboratory, the Materials Data Facility, the Data and Learning Hub for Science, and funcX, and the Argonne Leadership Computing Facility (ALCF), in particular the ThetaGPU supercomputer and the SambaNova DataScale®system at the ALCF AI Testbed. We describe how this domain-agnostic computational framework may be harnessed to enable autonomous AI-driven discovery.

    more » « less
  4. Abstract

    Transition metal dichalcogenides (TMDs), especially in two-dimensional (2D) form, exhibit many properties desirable for device applications. However, device performance can be hindered by the presence of defects. Here, we combine state of the art experimental and computational approaches to determine formation energies and charge transition levels of defects in bulk and 2D MX2(M = Mo or W; X = S, Se, or Te). We perform deep level transient spectroscopy (DLTS) measurements of bulk TMDs. Simultaneously, we calculate formation energies and defect levels of all native point defects, which enable identification of levels observed in DLTS and extend our calculations to vacancies in 2D TMDs, for which DLTS is challenging. We find that reduction of dimensionality of TMDs to 2D has a significant impact on defect properties. This finding may explain differences in optical properties of 2D TMDs synthesized with different methods and lays foundation for future developments of more efficient TMD-based devices.

    more » « less
  5. Abstract

    Obtaining accurate estimates of machine learning model uncertainties on newly predicted data is essential for understanding the accuracy of the model and whether its predictions can be trusted. A common approach to such uncertainty quantification is to estimate the variance from an ensemble of models, which are often generated by the generally applicable bootstrap method. In this work, we demonstrate that the direct bootstrap ensemble standard deviation is not an accurate estimate of uncertainty but that it can be simply calibrated to dramatically improve its accuracy. We demonstrate the effectiveness of this calibration method for both synthetic data and numerous physical datasets from the field of Materials Science and Engineering. The approach is motivated by applications in physical and biological science but is quite general and should be applicable for uncertainty quantification in a wide range of machine learning regression models.

    more » « less
  6. Large-language models (LLMs) such as GPT-4 caught the interest of many scientists. Recent studies suggested that these models could be useful in chemistry and materials science. To explore these possibilities, we organized a hackathon. This article chronicles the projects built as part of this hackathon. Participants employed LLMs for various applications, including predicting properties of molecules and materials, designing novel interfaces for tools, extracting knowledge from unstructured data, and developing new educational applications. The diverse topics and the fact that working prototypes could be generated in less than two days highlight that LLMs will profoundly impact the future of our fields. The rich collection of ideas and projects also indicates that the applications of LLMs are not limited to materials science and chemistry but offer potential benefits to a wide range of scientific disciplines. 
    more » « less
    Free, publicly-accessible full text available August 8, 2024
  7. Abstract The information content of atomic-resolution scanning transmission electron microscopy (STEM) images can often be reduced to a handful of parameters describing each atomic column, chief among which is the column position. Neural networks (NNs) are high performance, computationally efficient methods to automatically locate atomic columns in images, which has led to a profusion of NN models and associated training datasets. We have developed a benchmark dataset of simulated and experimental STEM images and used it to evaluate the performance of two sets of recent NN models for atom location in STEM images. Both models exhibit high performance for images of varying quality from several different crystal lattices. However, there are important differences in performance as a function of image quality, and both models perform poorly for images outside the training data, such as interfaces with large difference in background intensity. Both the benchmark dataset and the models are available using the Foundry service for dissemination, discovery, and reuse of machine learning models. 
    more » « less