Polymer matrix composites have high strengths in tension. However, their compressive strengths are much lower than their tensile strengths due to their weak fiber/matrix interfacial shear strengths. We recently developed a new approach to fabricate composites by overwrapping individual carbon fibers or fiber tows with a carbon nanotube sheet and subsequently impregnate them into a matrix to enhance the interfacial shear strengths without degrading the tensile strengths of the carbon fibers. In this study, a theoretical analysis is conducted to identify the appropriate thickness of the nanocomposite interphase region formed by carbon nanotubes embedded in a matrix. Fibers are modeled as an anisotropic elastic material, and the nanocomposite interphase region and the matrix are considered as isotropic. A microbuckling problem is solved for the unidirectional composite under compression. The analytical solution is compared with finite element simulations for verification. It is determined that the critical load at the onset of buckling is lower in an anisotropic carbon fiber composite than in an isotropic fibfer composite due to lower transverse properties in the fibers. An optimal thickness for nanocomposite interphase region is determined, and this finding provides a guidance for the manufacture of composites using aligned carbon nanotubes as fillers in the nanocomposite interphase region.
more »
« less
Chemo‐mechanical properties of carbon fiber reinforced geopolymer interphase
Abstract Geopolymers, as a potentially environmentally friendly alternative to Portland cement, are increasingly attracting attention in the construction industry. Various methods have been applied for customizing the properties of geopolymers and improving their commercial viability. One of the promising methods for refining the properties of geopolymers such as their toughness is the use of short fibers. The effectiveness of a high‐strength short fiber in the geopolymer matrix is largely dependent on the interfacial bonding between the fiber and its surrounding matrix. While the importance of this interfacial chemistry is highlighted in the literature, the characteristics of this bonding structure have not been fully understood. In this paper, we aim to investigate the bonding mechanism between the carbon fiber and metakaolin‐based geopolymer matrix. For the first time, the existence and nature of the chemical bonding at the interfacial region (interphase) between carbon fiber and geopolymer matrix has been revealed. X‐ray pair distribution function computed tomography (PDF‐CT), field emission‐scanning electron microscopy imaging, and nanoindentation techniques are employed to discern the chemo‐mechanical properties of the interphase. PDF‐CT results show the emergence of a new atom–atom correlation at the interfacial region (around 1.82 Å). This correlation is a characteristic of interfacial bonding between the fiber and its surrounding matrix, where the existence of chemical linkages (potentiallyVAl‐O‐C) between fibers and the matrix contributes to the adhesion between the two constituents making up the composite. Due to such chemical bonding, the nanomechanical properties of the interfacial region fall between that of the carbon fiber and geopolymer. The combination of advanced techniques is proved useful for enhancing our understanding of the interfacial chemistry between fibers and the binding matrix. This level of knowledge facilitates the engineering of composite systems through the manipulation of their nanostructure.
more »
« less
- Award ID(s):
- 1553607
- PAR ID:
- 10367459
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of the American Ceramic Society
- Volume:
- 105
- Issue:
- 2
- ISSN:
- 0002-7820
- Page Range / eLocation ID:
- p. 1519-1532
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Cellulose nanocrystal (CNCs) assisted carbon nanotubes (CNTs) and graphene nanoplatelets (GnP) were used to modify the interfacial region of carbon fiber (CF) and polymer matrix to strengthen the properties of carbon fiber-reinforced polymer (CFRP). Before transferring CNC-CNTs and CNC-GnPs on the CF surface by an immersion coating method, the nanomaterials were dispersed in DI water homogeneously by using probe sonication technique without additives. The results showed that the addition of CNC-CNT and CNC-GnP adjusted the interfacial chemistry of CFRP with the formation of polar groups. Furthermore, according to the single fiber fragmentation test (SFFT), the interfacial shear strength (IFSS) of CNC-GnP 6:1 and CNC-CNT 10:1 added CFRP increased to 55 MPa and 64 MPa due to modified interfacial chemistry by the incorporation of the nanomaterials. This processing technique also resulted in improvement in interlaminar shear strength (ILSS) in CFRPs from 35 MPa (neat composite) to 45 (CNC-GnP 6:1) MPa and 52 MPa (CNC-CNT 10:1).more » « less
-
Debonding at the core–skin interphase region is one of the primary failure modes in core sandwich composites under shear loads. As a result, the ability to characterize the mechanical properties at the interphase region between the composite skin and core is critical for design analysis. This work intends to use nanoindentation to characterize the viscoelastic properties at the interphase region, which can potentially have mechanical properties changing from the composite skin to the core. A sandwich composite using a polyvinyl chloride foam core covered with glass fiber/resin composite skins was prepared by vacuum-assisted resin transfer molding. Nanoindentation at an array of sites was made by a Berkovich nanoindenter tip. The recorded nanoindentation load and depth as a function of time were analyzed using viscoelastic analysis. Results are reported for the shear creep compliance and Young’s relaxation modulus at various locations of the interphase region. The change of viscoelastic properties from higher values close to the fiber composite skin region to the smaller values close to the foam core was captured. The Young’s modulus at a given strain rate, which is also equal to the time-averaged Young’s modulus across the interphase region was obtained. The interphase Young’s modulus at a loading rate of 1 mN/s was determined to change from 1.4 GPa close to composite skin to 0.8 GPa close to the core. This work demonstrated the feasibility and effectiveness of nanoindentation-based interphase characterizations to be used as an input for the interphase stress distribution calculations, which can eventually enrich the design process of such sandwich composites.more » « less
-
Abstract A novel method is developed for reusing the waste glass fiber-reinforced polymer (GFRP) powder as a precursor in geopolymer production. Several activation parameters that affect the workability and strength gain of GFRP powder-based geopolymers are investigated. The results of an experimental study reveal that the early strength of GFRP powder-based geopolymer pastes develops slowly at ambient temperature. The highest compressive strength of GFRP powder-based geopolymer pastes is 7.13 MPa at an age of 28 days. The ratio of compressive strength to flexural strength of GFRP powder-based-geopolymers is lower than that of fly ash and ground granulated blast furnace slag (GGBS)-based geopolymers, indicating that the incorporation of GFRP powder can improve the geopolymer brittleness. GGBS is incorporated into geopolymer blends to accelerate the early activity of GFRP powder. The binary geopolymer pastes exhibit shorter setting times and higher mechanical strength values than those of single GFRP powder geopolymer pastes. The GGBS geopolymer concrete mixture with 30 wt% GFRP powder displayed the highest compressive strength and flexural strength values and was less brittle. The developed binary GFRP powder/GGBS-based geopolymers reduce the disadvantages of single GFRP powder or GGBS geopolymers, and thus, offer high potential as a building construction material.more » « less
-
Thermoplastic resins (linear low-density polyethylene (LLDPE), high-density polyethylene (HDPE), and polypropylene (PP)) reinforced by different content ratios of raw agave fibers were prepared and characterized in terms of their mechanical, thermal, and chemical properties as well as their morphology. The morphological properties of agave fibers and films were characterized by scanning electron microscopy and the variations in chemical interactions between the filler and matrix materials were studied using Fourier-transform infrared spectroscopy. No significant chemical interaction between the filler and matrix was observed. Melting point and crystallinity of the composites were evaluated for the effect of agave fiber on thermal properties of the composites, and modulus and yield strength parameters were inspected for mechanical analysis. While addition of natural fillers did not affect the overall thermal properties of the composite materials, elastic modulus and yielding stress exhibited direct correlation to the filler content and increased as the fiber content was increased. The highest elastic moduli were achieved with 20 wt % agave fiber for all the three composites. The values were increased by 319.3%, 69.2%, and 57.2%, for LLDPE, HDPE, and PP, respectively. The optimum yield stresses were achieved with 20 wt % fiber for LLDPE increasing by 84.2% and with 30 wt % for both HDPE and PP, increasing by 52% and 12.3% respectively.more » « less
An official website of the United States government
