To better understand temperature's role in the interaction between local evolutionary adaptation and physiological plasticity, we investigated acclimation effects on metabolic performance and thermal tolerance among natural Fundulus heteroclitus (small estuarine fish) populations from different thermal environments. Fundulus heteroclitus populations experience large daily and seasonal temperature variations, as well as local mean temperature differences across their large geographical cline. In this study, we use three populations: one locally heated (32°C) by thermal effluence (TE) from the Oyster Creek Nuclear Generating Station, NJ, and two nearby reference populations that do not experience local heating (28°C). After acclimation to 12 or 28°C, we quantified whole-animal metabolic (WAM) rate, critical thermal maximum (CT max ) and substrate-specific cardiac metabolic rate (CaM, substrates: glucose, fatty acids, lactate plus ketones plus ethanol, and endogenous (i.e. no added substrates)) in approximately 160 individuals from these three populations. Populations showed few significant differences due to large interindividual variation within populations. In general, for WAM and CT max , the interindividual variation in acclimation response (log 2 ratio 28/12°C) was a function of performance at 12°C and order of acclimation (12–28°C versus 28–12°C). CT max and WAM were greater at 28°C than 12°C, although WAM had a small change (2.32-fold) compared with the expectation for a 16°C increase in temperature (expect 3- to 4.4-fold). By contrast, for CaM, the rates when acclimatized and assayed at 12 or 28°C were nearly identical. The small differences in CaM between 12 and 28°C temperature were partially explained by cardiac remodeling where individuals acclimatized to 12°C had larger hearts than individuals acclimatized to 28°C. Correlation among physiological traits was dependent on acclimation temperature. For example, WAM was negatively correlated with CT max at 12°C but positively correlated at 28°C. Additionally, glucose substrate supported higher CaM than fatty acid, and fatty acid supported higher CaM than lactate, ketones and alcohol (LKA) or endogenous. However, these responses were highly variable with some individuals using much more FA than glucose. These findings suggest interindividual variation in physiological responses to temperature acclimation and indicate that additional research investigating interindividual may be relevant for global climate change responses in many species.
more »
« less
Environment‐driven shifts in interindividual variation and phenotypic integration within subnetworks of the mussel transcriptome and proteome
Abstract The environment can alter the magnitude of phenotypic variation among individuals, potentially influencing evolutionary trajectories. However, environmental influences on variation are complex and remain understudied. Populations in heterogeneous environments might exhibit more variation, the amount of variation could differ between benign and stressful conditions, and/or variation might manifest in different ways among stages of the gene‐to‐protein expression cascade or among physiological functions. Here, we explore these three issues by quantifying patterns of inter‐individual variation in both transcript and protein expression levels among California mussels,Mytilus californianusConrad. Mussels were exposed to five ecologically relevant treatments that varied in the mean and interindividual heterogeneity of body temperature. To target a diverse set of physiological functions, we assessed variation within 19 expression subnetworks, including canonical stress‐response pathways and empirically derived coexpression clusters that represent a diffuse set of cellular processes. Variation in expression was particularly pronounced in the treatments with high mean and heterogeneous body temperatures. However, with few exceptions, environment‐dependent shifts of variation in the transcriptome were not reflected in the proteome. A metric of phenotypic integration provided evidence for a greater degree of constraint on relative expression levels (i.e., stronger correlation) within expression subnetworks in benign, homogeneous environments. Our results suggest that environments that are more stressful on average – and which also tend to be more heterogeneous – can relax these expression constraints and reduce phenotypic integration within biochemical subnetworks. Context‐dependent “unmasking” of functional variation may contribute to interindividual differences in physiological phenotype and performance in stressful environments.
more »
« less
- Award ID(s):
- 1655822
- PAR ID:
- 10367553
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Molecular Ecology
- Volume:
- 31
- Issue:
- 11
- ISSN:
- 0962-1083
- Page Range / eLocation ID:
- p. 3112-3127
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Physiology defines individual responses to global climate change and species distributions across environments. Physiological responses are driven by temperature on three time scales: acute, acclimatory and evolutionary. Acutely, passive temperature effects often dictate an expected 2-fold increase in metabolic processes for every 10°C change in temperature (Q10). Yet, these acute responses often are mitigated through acclimation within an individual or evolutionary adaptation within populations over time. Natural selection can influence both responses and often reduces interindividual variation towards an optimum. However, this interindividual physiological variation is not well characterized. Here, we quantified responses to a 16°C temperature difference in six physiological traits across nine thermally distinct Fundulus heteroclitus populations. These traits included whole-animal metabolism (WAM), critical thermal maximum (CTmax) and substrate-specific cardiac metabolism measured in approximately 350 individuals. These traits exhibited high variation among both individuals and populations. Thermal sensitivity (Q10) was determined, specifically as the acclimated Q10, in which individuals were both acclimated and assayed at each temperature. The interindividual variation in Q10 was unexpectedly large: ranging from 0.6 to 5.4 for WAM. Thus, with a 16°C difference, metabolic rates were unchanged in some individuals, while in others they were 15-fold higher. Furthermore, a significant portion of variation was related to habitat temperature. Warmer populations had a significantly lower Q10 for WAM and CTmax after acclimation. These data suggest that individual variation in thermal sensitivity reflects different physiological strategies to respond to temperature variation, providing many different adaptive responses to changing environments.more » « less
-
Biologists aim to explain patterns of growth, reproduction, and ageing that characterize life histories, yet we are just beginning to understand the proximate mechanisms that generate this diversity. Existing research in this area has focused on telomeres but has generally overlooked the telomere’s most direct mediator, the shelterin protein complex. Shelterin proteins physically interact with the telomere to shape its shortening and repair. They also regulate metabolism and immune function, suggesting a potential role in life history variation in the wild. However, research on shelterin proteins is uncommon outside of biomolecular work. Intraspecific analyses can play an important role in resolving these unknowns because they reveal subtle variation in life history within and among populations. Here, we assessed ecogeographic variation in shelterin protein abundance across eight populations of tree swallow (Tachycineta bicolor) with previously documented variation in environmental and life history traits. Using blood gene expression of four shelterin proteins in 12-day old nestlings, we tested the hypothesis that shelterin protein gene expression varies latitudinally and in relation to both telomere length and life history. Shelterin protein gene expression differed among populations and tracked non-linear variation in latitude: nestlings from mid-latitudes expressed nearly double the shelterin mRNA on average than those at more northern and southern sites. However, telomere length was not significantly related to latitude. We next assessed whether telomere length and shelterin protein gene expression correlate with 12-day old body mass and wing length, two proxies of nestling growth linked to future fecundity and survival. We found that body mass and wing length correlated more strongly (and significantly) with shelterin protein gene expression than with telomere length. These results highlight telomere regulatory shelterin proteins as potential mediators of life history variation among populations. Together with existing research linking shelterin proteins and life history variation within populations, these ecogeographic patterns underscore the need for continued integration of ecology, evolution, and telomere biology, which together will advance understanding of the drivers of life history variation in nature.more » « less
-
Abstract Biologists aim to explain patterns of growth, reproduction and ageing that characterize life histories, yet we are just beginning to understand the proximate mechanisms that generate this diversity. Existing research in this area has focused on telomeres but has generally overlooked the telomere's most direct mediator, the shelterin protein complex. Shelterin proteins physically interact with the telomere to shape its shortening and repair. They also regulate metabolism and immune function, suggesting a potential role in life history variation in the wild. However, research on shelterin proteins is uncommon outside of biomolecular work.Intraspecific analyses can play an important role in resolving these unknowns because they reveal subtle variation in life history within and among populations. Here, we assessed ecogeographic variation in shelterin protein abundance across eight populations of tree swallow (Tachycineta bicolor) with previously documented variation in environmental and life history traits. Using the blood gene expression of four shelterin proteins in 12‐day‐old nestlings, we tested the hypothesis that shelterin protein gene expression varies latitudinally and in relation to both telomere length and life history.Shelterin protein gene expression differed among populations and tracked non‐linear variation in latitude: nestlings from mid‐latitudes expressed nearly double the shelterin mRNA on average than those at more northern and southern sites. However, telomere length was not significantly related to latitude.We next assessed whether telomere length and shelterin protein gene expression correlate with 12‐day‐old body mass and wing length, two proxies of nestling growth linked to future fecundity and survival. We found that body mass and wing length correlated more strongly (and significantly) with shelterin protein gene expression than with telomere length.These results highlight telomere regulatory shelterin proteins as potential mediators of life history variation among populations. Together with existing research linking shelterin proteins and life history variation within populations, these ecogeographic patterns underscore the need for continued integration of ecology, evolution and telomere biology, which together will advance understanding of the drivers of life history variation in nature.more » « less
-
Abstract Plant ecological strategies are shaped by numerous functional traits and their trade‐offs. Trait network analysis enables testing hypotheses for the shifting of trait correlation architecture across communities differing in climate and productivity.We built plant trait networks (PTNs) for 118 species within six communities across an aridity gradient, from forest to semi‐desert across the California Floristic Province, based on 34 leaf and wood functional traits, representing hydraulic and photosynthetic function, structure, economics and size. We developed hypotheses for the association of PTN parameters with climate and ecosystem properties, based on theory for the adaptation of species to low resource/stressful environments versus higher resource availability environments with greater potential niche differentiation. Thus, we hypothesized that across community PTNs, trait network connectivity (i.e., the degree that traits are intercorrelated) and network complexity (i.e., the number of trait modules, and the degree of trait integration among modules) would be lower for communities adapted to arid climates and higher for communities adapted to greater water availability, similarly to trends expected for phylogenetic diversity, functional richness and productivity. Further, within given PTNs, we hypothesized that traits would vary strongly in their network connectivity and that the traits most centrally connected within PTNs would be those with the least across‐species variation.Across communities from more arid to wetter climates, PTN architecture varied from less to more interconnected and complex, in association with functional richness, but PTN architecture was independent of phylogenetic diversity and ecosystem productivity. Within the community PTNs, traits with lower species variation were more interconnected.Synthesis. The responsiveness of PTN architecture to climate highlights how a wide range of traits contributes to physiological and ecological strategies with an architecture that varies among plant communities. Communities in more arid environments show a lower degree of phenotypic integration, consistent with lesser niche differentiation. Our study extends the usefulness of PTNs as an approach to quantify tradeoffs among multiple traits, providing connectivity and complexity parameters as tools that clarify plant environmental adaptation and patterns of trait associations that would influence species distributions, community assembly, and ecosystem resilience in response to climate change.more » « less
An official website of the United States government
