skip to main content

Title: Tree diversity effects on soil microbial biomass and respiration are context dependent across forest diversity experiments
Abstract Aim

Soil microorganisms are essential for the functioning of terrestrial ecosystems. Although soil microbial communities and functions are linked to tree species composition and diversity, there has been no comprehensive study of the generality or context dependence of these relationships. Here, we examine tree diversity–soil microbial biomass and respiration relationships across environmental gradients using a global network of tree diversity experiments.


Boreal, temperate, subtropical and tropical forests.

Time period


Major taxa studied

Soil microorganisms.


Soil samples collected from 11 tree diversity experiments were used to measure microbial respiration, biomass and respiratory quotient using the substrate‐induced respiration method. All samples were measured using the same analytical device, method and procedure to reduce measurement bias. We used linear mixed‐effects models and principal components analysis (PCA) to examine the effects of tree diversity (taxonomic and phylogenetic), environmental conditions and interactions on soil microbial properties.


Abiotic drivers, mainly soil water content, but also soil carbon and soil pH, significantly increased soil microbial biomass and respiration. High soil water content reduced the importance of other abiotic drivers. Tree diversity had no effect on the soil microbial properties, but interactions with phylogenetic diversity indicated that the effects of diversity were context dependent and stronger in drier soils. Similar results were found for soil carbon and soil pH.

Main conclusions

Our results indicate the importance of abiotic variables, especially soil water content, for maintaining high levels of soil microbial functions and modulating the effects of other environmental drivers. Planting tree species with diverse water‐use strategies and structurally complex canopies and high leaf area might be crucial for maintaining high soil microbial biomass and respiration. Given that greater phylogenetic distance alleviated unfavourable soil water conditions, reforestation efforts that account for traits improving soil water content or select more phylogenetically distant species might assist in increasing soil microbial functions.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ; « less
Publisher / Repository:
Date Published:
Journal Name:
Global Ecology and Biogeography
Page Range / eLocation ID:
p. 872-885
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Peatlands play an important role in global biogeochemical cycles and are essential for multiple ecosystem functions. Understanding the environmental drivers of microbial functioning and community structure can provide insights to enable effective and evidence‐based management. However, it remains largely unknown how microbial diversity contributes to the functioning of belowground processes. Addressing this gap in knowledge will provide a better understanding of microbial‐mediated processes in peatlands that are undergoing restoration or reclamation. This study assessed the changes in microbial community diversity and structure as well as soil function by measuring microbial respiration on a range of substrates from three natural fen types found in the Athabasca Oil Sands region of Alberta, Canada (a poor fen, a hypersaline fen, and a tree‐rich fen) and a nearby constructed fen undergoing reclamation following open pit mining. Overall, substrate induced respiration was significantly higher in the constructed fen. Alpha diversity of fungi and prokaryotes was highest in the tree‐rich fen, and the composition of microbial communities was significantly different between fens. Both fungal and prokaryotic communities were strongly related to pore water pH and temperature, with plant richness also contributing to the shape of fungal communities. In summary, microbial community structure reflects the underlying differences in soil condition across different fens but plays essential roles in the ecological functions of soil. These findings provide a new outlook for the management of peatlands undergoing post‐mining reclamation. Future research on peatland reclamation should consider the dynamic interaction between communities and ecosystem functionality, for which this study forms a useful baseline.

    more » « less
  2. Introduction Soil microbial communities, including biological soil crust microbiomes, play key roles in water, carbon and nitrogen cycling, biological weathering, and other nutrient releasing processes of desert ecosystems. However, our knowledge of microbial distribution patterns and ecological drivers is still poor, especially so for the Chihuahuan Desert. Methods This project investigated the effects of trampling disturbance on surface soil microbiomes, explored community composition and structure, and related patterns to abiotic and biotic landscape characteristics within the Chihuahuan Desert biome. Composite soil samples were collected in disturbed and undisturbed areas of 15 long-term ecological research plots in the Jornada Basin, New Mexico. Microbial diversity of cross-domain microbial groups (total Bacteria, Cyanobacteria, Archaea, and Fungi) was obtained via DNA amplicon metabarcode sequencing. Sequence data were related to landscape characteristics including vegetation type, landforms, ecological site and state as well as soil properties including gravel content, soil texture, pH, and electrical conductivity. Results Filamentous Cyanobacteria dominated the photoautotrophic community while Proteobacteria and Actinobacteria dominated among the heterotrophic bacteria. Thaumarchaeota were the most abundant Archaea and drought adapted taxa in Dothideomycetes and Agaricomycetes were most abundant fungi in the soil surface microbiomes. Apart from richness within Archaea ( p  = 0.0124), disturbed samples did not differ from undisturbed samples with respect to alpha diversity and community composition ( p  ≥ 0.05), possibly due to a lack of frequent or impactful disturbance. Vegetation type and landform showed differences in richness of Bacteria, Archaea, and Cyanobacteria but not in Fungi. Richness lacked strong relationships with soil variables. Landscape features including parent material, vegetation type, landform type, and ecological sites and states, exhibited stronger influence on relative abundances and microbial community composition than on alpha diversity, especially for Cyanobacteria and Fungi. Soil texture, moisture, pH, electrical conductivity, lichen cover, and perennial plant biomass correlated strongly with microbial community gradients detected in NMDS ordinations. Discussion Our study provides first comprehensive insights into the relationships between landscape characteristics, associated soil properties, and cross-domain soil microbiomes in the Chihuahuan Desert. Our findings will inform land management and restoration efforts and aid in the understanding of processes such as desertification and state transitioning, which represent urgent ecological and economical challenges in drylands around the world. 
    more » « less
  3. Chi Fru, Ernest ; Chik, Alex ; Colwell, Fredrick ; Dittrich, Maria ; Engel, Annette ; Keenan, Sarah ; Meckenstock, Rainer ; Omelon, Christopher ; Purkamo, Lotta ; Weisener, Chris (Ed.)

    Roots are common features in basaltic lava tube caves on the island of Hawai‘i. For the past 50 years, new species of cave-adapted invertebrates, including cixiid planthoppers, crickets, thread-legged bugs, and spiders, have been discovered from root patches in lava tubes on different volcanoes and across variable climatic conditions. Assessing vegetation on the surface above lava tube passages, as well as genetic characterization of roots from within lava tubes, suggest that most roots belong to the native pioneer tree, ‘ōhi‘a lehua (Metrosideros polymorpha). Planthoppers are the primary consumers of sap at the base of the subsurface food web. However, root physicochemistry and rhizobiome microbial diversity and functional potential have received little attention. This study focuses on characterizing the ‘ōhi‘a rhizobiome, accessed from free-hanging roots inside lava tubes. Using these results, we can begin to evaluate the development and evolution of plant-microbe-invertebrate relationships.

    We explored lava tubes formed in flows of differing elevations and ages, from about 140 to 3000 years old, on Mauna Loa, Kīlauea, and Hualālai volcanoes on Hawai‘i Island. Invertebrate diversity was evaluated from root galleries and non-root galleries, in situ fluid physicochemistry was measured, and root and bare rock fluids (e.g., water, sap) were collected to determine major ion concentrations, as well as non-purgeable organic carbon (NPOC) and total nitrogen (TN) content. To verify root identity, DNA was extracted, and three sets of primers were used. After screening for onlyMetrosiderosspp., the V4 region of the 16S rRNA gene was sequenced and taxonomy was assigned.

    Root fluids were viscous and ranged in color from clear to yellow to reddish orange. Root fluids had 2X to 10X higher major ion concentrations compared to rock water. The average root NPOC and TN concentrations were 192 mg/L and 5.2 mg/L, respectively, compared to rock water that had concentrations of 6.8 mg/L and 1.8 mg/L, respectively. Fluids from almost 300 root samples had pH values that ranged from 2.2 to 5.6 (average pH 4.63) and were lower than rock water (average pH 6.39). Root fluid pH was comparable to soil pH from montane wet forests dominated by ‘ōhi‘a (Selmants et al. 2016), which can grow in infertile soil with pH values as low as 3.6. On Hawai‘i, rain water pH averages 5.2 at sea level and systematically decreases with elevation to pH 4.3 at 2500 m (Miller and Yoshinaga 2012), but root fluid pH did not correlate with elevation, temperature, relative humidity, inorganic and organic constituents, or age of flow. Root fluid acidity is likely due to concentrated organic compounds, sourced as root exudates, and this habitat is acidic for the associated invertebrates.

    From 62 root samples, over 66% were identified to the genusMetrosideros. A few other identifications of roots from lava tube systems where there had been extensive clear-cutting and ranching included monkey pod tree, coconut palm,Ficusspp., and silky oak.

    The 16S rRNA gene sequence surveys revealed that root bacterial communities were dominated by few groups, including Burkholderiaceae, as well as Acetobacteraceae, Sphingomonadaceae, Acidobacteriaceae, Gemmataceae, Xanthobacteraceae, and Chitinophagaceae. However, most of the reads could not be classified to a specific genus, which suggested that the rhizobiome harbor novel diversity. Diversity was higher from wetter climates. The root communities were distinct from those described previously from ‘ōhi‘a flowers and leaves (Junker and Keller 2015) and lava tube rocky surfaces (Hathaway et al. 2014) where microbial groups were specifically presumed capable of heterotrophy, methanotrophy, diazotrophy, and nitrification. Less can be inferred for the rhizobiome metabolism, although most taxa are likely aerobic heterotrophs. Within the Burkholderiaceae, there were high relative abundances of sequences affiliated with the genusParaburkholderia, which includes known plant symbionts, as well as the acidophilic generaAcidocellaandAcidisomafrom the Acetobacteraceae, which were retrieved predominately from caves in the oldest lava flows that also had the lowest root pH values. It is likely that the bacterial groups are capable of degrading exudates and providing nutritional substrates for invertebrate consumers that are not provided by root fluids (i.e., phloem) alone.

    As details about the biochemistry of ‘ōhi‘a have been missing, characterizing the rhizobiome from lava tubes will help to better understand potential plant-microbe-invertebrate interactions and ecological and evolutionary relationships through time. In particular, the microbial rhizobiome may produce compounds used by invertebrates nutritionally or that affect their behavior, and changes to the rhizobiome in response to environmental conditions may influence invertebrate interactions with the roots, which could be important to combat climate change effects or invasive species introductions.

    more » « less
  4. Abstract Aim

    Nitrogen (N)‐fixing plants are an important component of global plant communities, but the drivers of N‐fixing plant diversity, especially in temperate regions, remain underexplored. Here, we examined broad‐scale patterns of N‐fixing and non‐fixing plant phylogenetic diversity (PD) and species richness (SR) across a wide portion of temperate North America, focusing on relationships with soil N and aridity. We also tested whether exotic species, with and without N‐fixing symbiosis, have fewer abiotic limitations compared with native species.


    USA and Puerto Rico.

    Time period


    Major taxa studied

    Vascular plants, focusing on N‐fixing groups (orders Fabales, Fagales, Rosales and Cucurbitales).


    We subset National Ecological Observatory Network (NEON) plant plot data from all sites along two axes (N fixing–non‐N fixing and native–exotic), calculating plot‐level SR, PD and mean pairwise phylogenetic distance (MPD). We then used linear mixed models to investigate relationships between diversity values and key soil measurements, along with aridity, temperature and fire frequency.


    Aridity was the sole predictor of proportional phylogenetic diversity of N fixers. The SR of N fixers still decreased marginally in arid regions, whereas native N‐fixer MPD increased with aridity, indicative of unique lineages of N fixers in the driest conditions, in contrast to native non‐N fixers. The SR of both native N fixers and non‐N fixers increased in low‐N soils. Aridity did not affect SR of exotic non‐N fixers, unlike other groups, whereas exotic N fixers showed lower MPD in increasingly high‐N soils, suggesting filtering, contrary what was found for native N fixers.

    Main conclusions

    Our results suggest that it is not nitrogen, or any soil nutrient, that has the strongest effect on the relative success of N fixers in plant communities. Rather, aridity is the key driver, at least for native species, in line with empirical results from other biomes and increased understanding of N fixation as a key mechanism to avoid water loss.

    more » « less
  5. Abstract

    Many soils are deep, yet soil below 20 cm remains largely unexplored. Exotic plants can have shallower roots than native species, so their impact on microorganisms is anticipated to change with depth. Using environmentalDNAand extracellular enzymatic activities, we studied fungal and bacterial community composition, diversity, function, and co‐occurrence networks between native and exotic grasslands at soil depths up to 1 m. We hypothesized (1) the composition and network structure of both fungal and bacterial communities will change with increasing depth, and diversity and enzymatic function will decrease; (2) microbial enzymatic function and network connectedness will be lower in exotic grasslands; and (3) irrigation will alter microbial networks, increasing the overall connectedness. Microbial diversity decreased with depth, and community composition wasdistinctly differentbetween shallow and deeper soil depths with higher numbers of unknown taxa in lower soil depths. Fungal communities differed between native and exotic plant communities. Microbial community networks were strongly shaped by biotic and abiotic factors concurrently and were the only microbial measurement affected by irrigation. In general, fungal communities were more connected in native plant communities than exotic, especially below 10 cm. Fungal networks were also more connected at lower soil depths albeit with fewer nodes. Bacterial communities demonstrated higher complexity, and greater connectedness and nodes, at lower soil depths for native plant communities. Exotic plant communities’ bacterial network connectedness altered at lower soil depths dependent on irrigation treatments. Microbial extracellular enzyme activity for carbon cycling enzymes significantly declined with soil depth, but enzymes associated with nitrogen and phosphorus cycling continued to have similar activities up to 1 m deep. Our results indicate that native and exotic grasslands have significantly different fungal communities in depths up to 1 m and that both fungal and bacterial networks are strongly shaped jointly by plant communities and abiotic factors. Soil depth is independently a major determinant of both fungal and bacterial community structures, functions, and co‐occurrence networks and demonstrates further the importance of including soil itself when investigating plant–microbe interactions.

    more » « less