skip to main content

Title: Resuscitation of the microbial seed bank alters plant‐soil interactions

While microorganisms are recognized for driving belowground processes that influence the productivity and fitness of plant populations, the vast majority of bacteria and fungi in soil belong to a seed bank consisting of dormant individuals. However, plant performance may be affected by microbial dormancy through its effects on the activity, abundance, and diversity of soil microorganisms. To test how microbial seed banks influence plant‐soil interactions, we purified recombinant resuscitation promoting factor (Rpf), a bacterial protein that terminates dormancy. In a factorially designed experiment, we then applied the Rpf to soil containing field mustard (Brassicarapa), an agronomically important plant species. Plant biomass was ~33% lower in the Rpf treatment compared to plants grown with an unmanipulated microbial seed bank. In addition, Rpf reduced soil respiration, decreased bacterial abundance, and increased fungal abundance. These effects of Rpf on plant performance were accompanied by shifts in bacterial community composition, which may have diluted mutualists or resuscitated pathogens. Our findings suggest that changes in microbial seed banks may influence the magnitude and direction of plant‐soil feedbacks in ways that affect above‐ and belowground biodiversity and function.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
Molecular Ecology
Page Range / eLocation ID:
p. 2905-2914
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Anthropogenic nutrient enrichment and shifts in herbivory can lead to dramatic changes in the composition and diversity of aboveground plant communities. In turn, this can alter seed banks in the soil, which are cryptic reservoirs of plant diversity. Here, we use data from seven Nutrient Network grassland sites on four continents, encompassing a range of climatic and environmental conditions, to test the joint effects of fertilization and aboveground mammalian herbivory on seed banks and on the similarity between aboveground plant communities and seed banks. We find that fertilization decreases plant species richness and diversity in seed banks, and homogenizes composition between aboveground and seed bank communities. Fertilization increases seed bank abundance especially in the presence of herbivores, while this effect is smaller in the absence of herbivores. Our findings highlight that nutrient enrichment can weaken a diversity maintaining mechanism in grasslands, and that herbivory needs to be considered when assessing nutrient enrichment effects on seed bank abundance.

    more » « less
  2. Abstract

    Dormancy is an adaptation to living in fluctuating environments. It allows individuals to enter a reversible state of reduced metabolic activity when challenged by unfavorable conditions. Dormancy can also influence species interactions by providing organisms with a refuge from predators and parasites. Here we test the hypothesis that, by generating a seed bank of protected individuals, dormancy can modify the patterns and processes of antagonistic coevolution. We conducted a factorially designed experiment where we passaged a bacterial host (Bacillus subtilis) and its phage (SPO1) in the presence versus absence of a seed bank consisting of dormant endospores. Owing in part to the inability of phages to attach to spores, seed banks stabilized population dynamics and resulted in minimum host densities that were 30-fold higher compared to bacteria that were unable to engage in dormancy. By supplying a refuge to phage-sensitive strains, we show that seed banks retained phenotypic diversity that was otherwise lost to selection. Dormancy also stored genetic diversity. After characterizing allelic variation with pooled population sequencing, we found that seed banks retained twice as many host genes with mutations, whether phages were present or not. Based on mutational trajectories over the course of the experiment, we demonstrate that seed banks can dampen bacteria-phage coevolution. Not only does dormancy create structure and memory that buffers populations against environmental fluctuations, it also modifies species interactions in ways that can feed back onto the eco-evolutionary dynamics of microbial communities.

    more » « less
  3. Abstract

    Acute resource pulses can have dramatic legacies for organismal growth, but the legacy effects of resource pulses on broader aspects of community structure and ecosystem processes are less understood. Mass emergence of periodical cicadas (Magicicadaspp.) provides an excellent opportunity to shed light on the influence of resource pulses on community and ecosystem dynamics: the adults emerge every 13 or 17 years in vast numbers over much of eastern North America, with a smaller but still significant number becoming incorporated into forest food webs. To study the potential effects of such arthropod resource pulse on primary production and belowground food webs, we added adult cicada bodies to the soil surface surrounding sycamore trees and assessed soil carbon and nitrogen concentrations, plant‐available nutrients, abundance and community composition of soil fauna occupying various trophic levels, decomposition rate of plant litter after 50 and 100 days, and tree performance for 4 years. Contrary to previous studies, we did not find significant cicada effects on tree performance despite observing higher plant‐available nutrient levels on cicada addition plots. Cicada addition did change the community composition of soil nematodes and increased the abundance of bacterial‐ and fungal‐feeding nematodes, while plant feeders, omnivores, and predators were not influenced. Altogether, acute resource pulses from decomposing cicadas propagated belowground to soil microbial‐feeding invertebrates and stimulated nutrient mineralization in the soil, but these effects did not transfer up to affect tree performance. We conclude that, despite their influence on soil food web and processes they carry out, even massive resource pulses from arthropods do not necessarily translate to NPP, supporting the view that ephemeral nutrient pulses can be attenuated relatively quickly despite being relatively large in magnitude.

    more » « less
  4. Gao, Cheng (Ed.)
    ABSTRACT <p>Most of Earth’s trees rely on critical soil nutrients that ectomycorrhizal fungi (EcMF) liberate and provide, and all of Earth’s land plants associate with bacteria that help them survive in nature. Yet, our understanding of how the presence of EcMF modifies soil bacterial communities, soil food webs, and root chemistry requires direct experimental evidence to comprehend the effects that EcMF may generate in the belowground plant microbiome. To this end, we grew<italic>Pinus muricata</italic>plants in soils that were either inoculated with EcMF and native forest bacterial communities or only native bacterial communities. We then profiled the soil bacterial communities, applied metabolomics and lipidomics, and linked omics data sets to understand how the presence of EcMF modifies belowground biogeochemistry, bacterial community structure, and their functional potential. We found that the presence of EcMF (i) enriches soil bacteria linked to enhanced plant growth in nature, (ii) alters the quantity and composition of lipid and non-lipid soil metabolites, and (iii) modifies plant root chemistry toward pathogen suppression, enzymatic conservation, and reactive oxygen species scavenging. Using this multi-omic approach, we therefore show that this widespread fungal symbiosis may be a common factor for structuring soil food webs.</p><sec><title>IMPORTANCE

    Understanding how soil microbes interact with one another and their host plant will help us combat the negative effects that climate change has on terrestrial ecosystems. Unfortunately, we lack a clear understanding of how the presence of ectomycorrhizal fungi (EcMF)—one of the most dominant soil microbial groups on Earth—shapes belowground organic resources and the composition of bacterial communities. To address this knowledge gap, we profiled lipid and non-lipid metabolites in soils and plant roots, characterized soil bacterial communities, and compared soils amended either with or without EcMF. Our results show that the presence of EcMF changes soil organic resource availability, impacts the proliferation of different bacterial communities (in terms of both type and potential function), and primes plant root chemistry for pathogen suppression and energy conservation. Our findings therefore provide much-needed insight into how two of the most dominant soil microbial groups interact with one another and with their host plant.

    more » « less
  5. Summary

    Water and nutrient acquisition are key drivers of plant health and ecosystem function. These factors impact plant physiology directly as well as indirectly through soil‐ and root‐associated microbial responses, but how they in turn affect aboveground plant–microbe interactions are not known.

    Through experimental manipulations in the field and growth chamber, we examine the interacting effects of water stress, soil fertility, and arbuscular mycorrhizal fungi on bacterial and fungal communities of the tomato (Solanum lycopersicum) phyllosphere.

    Both water stress and mycorrhizal disruption reduced leaf bacterial richness, homogenized bacterial community composition among plants, and reduced the relative abundance of dominant fungal taxa. We observed striking parallelism in the individual microbial taxa in the phyllosphere affected by irrigation and mycorrhizal associations.

    Our results show that soil conditions and belowground interactions can shape aboveground microbial communities, with important potential implications for plant health and sustainable agriculture.

    more » « less