skip to main content


Title: Consequences of Dryland Maize Planting Decisions Under Increased Seasonal Rainfall Variability
Abstract

Shifts in rainfall frequency and intensity can lead to heavy crop loss in rainfed agricultural systems. Small‐scale farmers who plant with limited resources need to carefully select management strategies that are well suited for their environment. Farmers must choose between planting higher‐yielding varieties that take longer to mature and lower‐yielding varieties that can be harvested sooner. To better understand the interactions between rainfall variability, cultivar choice, and cropping success, we implement an ecohydrological model that accounts for variation in daily soil moisture and converts water stress to crop yield. We apply the model to growing conditions of dryland farmers in central Kenya, which is a drought‐prone and semiarid region with spatially heterogeneous rainfall. To simulate stochastic daily rainfall, we derive parameters in 10‐day increments from a 30+ year daily rainfall data set. We use these properties to model the stochastic seasonal water availability for cultivars with different maturation lengths. In agreement with past studies, our analysis shows that storms are becoming more intense and less frequent. We show that maize crops are prone to water deficit in the part of the growing season when crop water requirements are highest. Despite the potential for higher‐yielding, late maturing varieties to improve total harvest, we find that early maturing varieties that are drought‐avoidant have the lowest likelihood of failure. In light of reduced rainfall totals, we show that the historical probability of crop failure was lowest in the past and is now increasing.

 
more » « less
NSF-PAR ID:
10367609
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
57
Issue:
9
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Increasing climate aridity and drought, exacerbated by global warming, are increasing risks for western United States of America (U.S.A.) rainfed farming, and challenging producers’ capacity to maintain production and profitability. With agricultural water demand in the region exceeding limited supplies and fewer opportunities to develop new water sources, rainfed agriculture is under increasing pressure to meet the nation’s growing food demands. This study examines three major western U.S.A. rainfed crops: barley, spring wheat, and winter wheat. We analyzed the relationship between crop repurposing (the ratio of acres harvested for grain to the total planted acres) to seasonal climatic water deficit (CWD). To isolate the climate signal from economic factors, our analysis accounted for the influence of crop prices on grain harvest. We used historical climate and agricultural data between 1958 and 2020 to model crop repurposing (e.g. forage) across the observed CWD record using a fixed effect model. Our methodology is applicable for any region and incorporates regional differences in farming and economic drivers. Our results indicate that farmers are less likely to harvest barley and spring wheat for grain when the spring CWD is above average. Of the major winter wheat growing regions, only the Northern High Plains in Texas showed a trend of decreasing grain harvest during high CWD. For the majority of major crop growing regions, grain prices increased with lower levels of grain harvest. Interestingly, winter wheat repurposing is significantly higher in the southern Great Plains (∼50% harvested for grain) compared to the rest of the West (∼90%). Our results highlight that the major barley and spring wheat regions’ grain harvests are vulnerable to high spring CWD and low summer CWD, while winter wheat grain harvest is unaffected by variable CWD in most of the West.

     
    more » « less
  2. Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (> 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems may leach legacy P from past cropland management. Experimental details The Biofuel Cropping System Experiment (BCSE) is located at the W.K. Kellogg Biological Station (KBS) (42.3956° N, 85.3749° W; elevation 288 m asl) in southwestern Michigan, USA. This site is a part of the Great Lakes Bioenergy Research Center (www.glbrc.org) and is a Long-term Ecological Research site (www.lter.kbs.msu.edu). Soils are mesic Typic Hapludalfs developed on glacial outwash54 with high sand content (76% in the upper 150 cm) intermixed with silt-rich loess in the upper 50 cm55. The water table lies approximately 12–14 m below the surface. The climate is humid temperate with a mean annual air temperature of 9.1 °C and annual precipitation of 1005 mm, 511 mm of which falls between May and September (1981–2010)56,57. The BCSE was established as a randomized complete block design in 2008 on preexisting farmland. Prior to BCSE establishment, the field was used for grain crop and alfalfa (Medicago sativa L.) production for several decades. Between 2003 and 2007, the field received a total of ~ 300 kg P ha−1 as manure, and the southern half, which contains one of four replicate plots, received an additional 206 kg P ha−1 as inorganic fertilizer. The experimental design consists of five randomized blocks each containing one replicate plot (28 by 40 m) of 10 cropping systems (treatments) (Supplementary Fig. S1; also see Sanford et al.58). Block 5 is not included in the present study. Details on experimental design and site history are provided in Robertson and Hamilton57 and Gelfand et al.59. Leaching of P is analyzed in six of the cropping systems: (i) continuous no-till corn, (ii) switchgrass, (iii) miscanthus, (iv) a mixture of five species of native grasses, (v) a restored native prairie containing 18 plant species (Supplementary Table S1), and (vi) hybrid poplar. Agronomic management Phenological cameras and field observations indicated that the perennial herbaceous crops emerged each year between mid-April and mid-May. Corn was planted each year in early May. Herbaceous crops were harvested at the end of each growing season with the timing depending on weather: between October and November for corn and between November and December for herbaceous perennial crops. Corn stover was harvested shortly after corn grain, leaving approximately 10 cm height of stubble above the ground. The poplar was harvested only once, as the culmination of a 6-year rotation, in the winter of 2013–2014. Leaf emergence and senescence based on daily phenological images indicated the beginning and end of the poplar growing season, respectively, in each year. Application of inorganic fertilizers to the different crops followed a management approach typical for the region (Table 1). Corn was fertilized with 13 kg P ha−1 year−1 as starter fertilizer (N-P-K of 19-17-0) at the time of planting and an additional 33 kg P ha−1 year−1 was added as superphosphate in spring 2015. Corn also received N fertilizer around the time of planting and in mid-June at typical rates for the region (Table 1). No P fertilizer was applied to the perennial grassland or poplar systems (Table 1). All perennial grasses (except restored prairie) were provided 56 kg N ha−1 year−1 of N fertilizer in early summer between 2010 and 2016; an additional 77 kg N ha−1 was applied to miscanthus in 2009. Poplar was fertilized once with 157 kg N ha−1 in 2010 after the canopy had closed. Sampling of subsurface soil water and soil for P determination Subsurface soil water samples were collected beneath the root zone (1.2 m depth) using samplers installed at approximately 20 cm into the unconsolidated sand of 2Bt2 and 2E/Bt horizons (soils at the site are described in Crum and Collins54). Soil water was collected from two kinds of samplers: Prenart samplers constructed of Teflon and silica (http://www.prenart.dk/soil-water-samplers/) in replicate blocks 1 and 2 and Eijkelkamp ceramic samplers (http://www.eijkelkamp.com) in blocks 3 and 4 (Supplementary Fig. S1). The samplers were installed in 2008 at an angle using a hydraulic corer, with the sampling tubes buried underground within the plots and the sampler located about 9 m from the plot edge. There were no consistent differences in TDP concentrations between the two sampler types. Beginning in the 2009 growing season, subsurface soil water was sampled at weekly to biweekly intervals during non-frozen periods (April–November) by applying 50 kPa of vacuum to each sampler for 24 h, during which the extracted water was collected in glass bottles. Samples were filtered using different filter types (all 0.45 µm pore size) depending on the volume of leachate collected: 33-mm dia. cellulose acetate membrane filters when volumes were less than 50 mL; and 47-mm dia. Supor 450 polyethersulfone membrane filters for larger volumes. Total dissolved phosphorus (TDP) in water samples was analyzed by persulfate digestion of filtered samples to convert all phosphorus forms to soluble reactive phosphorus, followed by colorimetric analysis by long-pathlength spectrophotometry (UV-1800 Shimadzu, Japan) using the molybdate blue method60, for which the method detection limit was ~ 0.005 mg P L−1. Between 2009 and 2016, soil samples (0–25 cm depth) were collected each autumn from all plots for determination of soil test P (STP) by the Bray-1 method61, using as an extractant a dilute hydrochloric acid and ammonium fluoride solution, as is recommended for neutral to slightly acidic soils. The measured STP concentration in mg P kg−1 was converted to kg P ha−1 based on soil sampling depth and soil bulk density (mean, 1.5 g cm−3). Sampling of water samples from lakes, streams and wells for P determination In addition to chemistry of soil and subsurface soil water in the BCSE, waters from lakes, streams, and residential water supply wells were also sampled during 2009–2016 for TDP analysis using Supor 450 membrane filters and the same analytical method as for soil water. These water bodies are within 15 km of the study site, within a landscape mosaic of row crops, grasslands, deciduous forest, and wetlands, with some residential development (Supplementary Fig. S2, Supplementary Table S2). Details of land use and cover change in the vicinity of KBS are given in Hamilton et al.48, and patterns in nutrient concentrations in local surface waters are further discussed in Hamilton62. Leaching estimates, modeled drainage, and data analysis Leaching was estimated at daily time steps and summarized as total leaching on a crop-year basis, defined from the date of planting or leaf emergence in a given year to the day prior to planting or emergence in the following year. TDP concentrations (mg L−1) of subsurface soil water were linearly interpolated between sampling dates during non-freezing periods (April–November) and over non-sampling periods (December–March) based on the preceding November and subsequent April samples. Daily rates of TDP leaching (kg ha−1) were calculated by multiplying concentration (mg L−1) by drainage rates (m3 ha−1 day−1) modeled by the Systems Approach for Land Use Sustainability (SALUS) model, a crop growth model that is well calibrated for KBS soil and environmental conditions. SALUS simulates yield and environmental outcomes in response to weather, soil, management (planting dates, plant population, irrigation, N fertilizer application, and tillage), and genetics63. The SALUS water balance sub-model simulates surface runoff, saturated and unsaturated water flow, drainage, root water uptake, and evapotranspiration during growing and non-growing seasons63. The SALUS model has been used in studies of evapotranspiration48,51,64 and nutrient leaching20,65,66,67 from KBS soils, and its predictions of growing-season evapotranspiration are consistent with independent measurements based on growing-season soil water drawdown53 and evapotranspiration measured by eddy covariance68. Phosphorus leaching was assumed insignificant on days when SALUS predicted no drainage. Volume-weighted mean TDP concentrations in leachate for each crop-year and for the entire 7-year study period were calculated as the total dissolved P leaching flux (kg ha−1) divided by the total drainage (m3 ha−1). One-way ANOVA with time (crop-year) as the fixed factor was conducted to compare total annual drainage rates, P leaching rates, volume-weighted mean TDP concentrations, and maximum aboveground biomass among the cropping systems over all seven crop-years as well as with TDP concentrations from local lakes, streams, and groundwater wells. When a significant (α = 0.05) difference was detected among the groups, we used the Tukey honest significant difference (HSD) post-hoc test to make pairwise comparisons among the groups. In the case of maximum aboveground biomass, we used the Tukey–Kramer method to make pairwise comparisons among the groups because the absence of poplar data after the 2013 harvest resulted in unequal sample sizes. We also used the Tukey–Kramer method to compare the frequency distributions of TDP concentrations in all of the soil leachate samples with concentrations in lakes, streams, and groundwater wells, since each sample category had very different numbers of measurements. Individual spreadsheets in “data table_leaching_dissolved organic carbon and nitrogen.xls” 1.    annual precip_drainage 2.    biomass_corn, perennial grasses 3.    biomass_poplar 4.    annual N leaching _vol-wtd conc 5.    Summary_N leached 6.    annual DOC leachin_vol-wtd conc 7.    growing season length 8.    correlation_nh4 VS no3 9.    correlations_don VS no3_doc VS don Each spreadsheet is described below along with an explanation of variates. Note that ‘nan’ indicate data are missing or not available. First row indicates header; second row indicates units 1. Spreadsheet: annual precip_drainage Description: Precipitation measured from nearby Kellogg Biological Station (KBS) Long Term Ecological Research (LTER) Weather station, over 2009-2016 study period. Data shown in Figure 1; original data source for precipitation (https://lter.kbs.msu.edu/datatables/7). Drainage estimated from SALUS crop model. Note that drainage is percolation out of the root zone (0-125 cm). Annual precipitation and drainage values shown here are calculated for growing and non-growing crop periods. Variate    Description year    year of the observation crop    “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” precip_G    precipitation during growing period (milliMeter) precip_NG    precipitation during non-growing period (milliMeter) drainage_G    drainage during growing period (milliMeter) drainage_NG    drainage during non-growing period (milliMeter)      2. Spreadsheet: biomass_corn, perennial grasses Description: Maximum aboveground biomass measurements from corn, switchgrass, miscanthus, native grass and restored prairie plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2009-2015. Data shown in Figure 2.   Variate    Description year    year of the observation date    day of the observation (mm/dd/yyyy) crop    “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” replicate    each crop has four replicated plots, R1, R2, R3 and R4 station    stations (S1, S2 and S3) of samplings within the plot. For more details, refer to link (https://data.sustainability.glbrc.org/protocols/156) species    plant species that are rooted within the quadrat during the time of maximum biomass harvest. See protocol for more information, refer to link (http://lter.kbs.msu.edu/datatables/36) For maize biomass, grain and whole biomass reported in the paper (weed biomass or surface litter are excluded). Surface litter biomass not included in any crops; weed biomass not included in switchgrass and miscanthus, but included in grass mixture and prairie. fraction    Fraction of biomass biomass_plot    biomass per plot on dry-weight basis (Grams_Per_SquareMeter) biomass_ha    biomass (megaGrams_Per_Hectare) by multiplying column biomass per plot with 0.01 3. Spreadsheet: biomass_poplar Description: Maximum aboveground biomass measurements from poplar plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2009-2015. Data shown in Figure 2. Note that poplar biomass was estimated from crop growth curves until the poplar was harvested in the winter of 2013-14. Variate    Description year    year of the observation method    methods of poplar biomass sampling date    day of the observation (mm/dd/yyyy) replicate    each crop has four replicated plots, R1, R2, R3 and R4 diameter_at_ground    poplar diameter (milliMeter) at the ground diameter_at_15cm    poplar diameter (milliMeter) at 15 cm height biomass_tree    biomass per plot (Grams_Per_Tree) biomass_ha    biomass (megaGrams_Per_Hectare) by multiplying biomass per tree with 0.01 4. Spreadsheet: annual N leaching_vol-wtd conc Description: Annual leaching rate (kiloGrams_N_Per_Hectare) and volume-weighted mean N concentrations (milliGrams_N_Per_Liter) of nitrate (no3) and dissolved organic nitrogen (don) in the leachate samples collected from corn, switchgrass, miscanthus, native grass, restored prairie and poplar plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2009-2016. Data for nitrogen leached and volume-wtd mean N concentration shown in Figure 3a and Figure 3b, respectively. Note that ammonium (nh4) concentration were much lower and often undetectable (<0.07 milliGrams_N_Per_Liter). Also note that in 2009 and 2010 crop-years, data from some replicates are missing.    Variate    Description crop    “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” crop-year    year of the observation replicate    each crop has four replicated plots, R1, R2, R3 and R4 no3 leached    annual leaching rates of nitrate (kiloGrams_N_Per_Hectare) don leached    annual leaching rates of don (kiloGrams_N_Per_Hectare) vol-wtd no3 conc.    Volume-weighted mean no3 concentration (milliGrams_N_Per_Liter) vol-wtd don conc.    Volume-weighted mean don concentration (milliGrams_N_Per_Liter) 5. Spreadsheet: summary_N leached Description: Summary of total amount and forms of N leached (kiloGrams_N_Per_Hectare) and the percent of applied N lost to leaching over the seven years for corn, switchgrass, miscanthus, native grass, restored prairie and poplar plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2009-2016. Data for nitrogen amount leached shown in Figure 4a and percent of applied N lost shown in Figure 4b. Note the fraction of unleached N includes in harvest, accumulation in root biomass, soil organic matter or gaseous N emissions were not measured in the study. Variate    Description crop    “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” no3 leached    annual leaching rates of nitrate (kiloGrams_N_Per_Hectare) don leached    annual leaching rates of don (kiloGrams_N_Per_Hectare) N unleached    N unleached (kiloGrams_N_Per_Hectare) in other sources are not studied % of N applied N lost to leaching    % of N applied N lost to leaching 6. Spreadsheet: annual DOC leachin_vol-wtd conc Description: Annual leaching rate (kiloGrams_Per_Hectare) and volume-weighted mean N concentrations (milliGrams_Per_Liter) of dissolved organic carbon (DOC) in the leachate samples collected from corn, switchgrass, miscanthus, native grass, restored prairie and poplar plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2009-2016. Data for DOC leached and volume-wtd mean DOC concentration shown in Figure 5a and Figure 5b, respectively. Note that in 2009 and 2010 crop-years, water samples were not available for DOC measurements.     Variate    Description crop    “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” crop-year    year of the observation replicate    each crop has four replicated plots, R1, R2, R3 and R4 doc leached    annual leaching rates of nitrate (kiloGrams_Per_Hectare) vol-wtd doc conc.    volume-weighted mean doc concentration (milliGrams_Per_Liter) 7. Spreadsheet: growing season length Description: Growing season length (days) of corn, switchgrass, miscanthus, native grass, restored prairie and poplar plots in the Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2009-2015. Date shown in Figure S2. Note that growing season is from the date of planting or emergence to the date of harvest (or leaf senescence in case of poplar).   Variate    Description crop    “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” year    year of the observation growing season length    growing season length (days) 8. Spreadsheet: correlation_nh4 VS no3 Description: Correlation of ammonium (nh4+) and nitrate (no3-) concentrations (milliGrams_N_Per_Liter) in the leachate samples from corn, switchgrass, miscanthus, native grass, restored prairie and poplar plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2013-2015. Data shown in Figure S3. Note that nh4+ concentration in the leachates was very low compared to no3- and don concentration and often undetectable in three crop-years (2013-2015) when measurements are available. Variate    Description crop    “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” date    date of the observation (mm/dd/yyyy) replicate    each crop has four replicated plots, R1, R2, R3 and R4 nh4 conc    nh4 concentration (milliGrams_N_Per_Liter) no3 conc    no3 concentration (milliGrams_N_Per_Liter)   9. Spreadsheet: correlations_don VS no3_doc VS don Description: Correlations of don and nitrate concentrations (milliGrams_N_Per_Liter); and doc (milliGrams_Per_Liter) and don concentrations (milliGrams_N_Per_Liter) in the leachate samples of corn, switchgrass, miscanthus, native grass, restored prairie and poplar plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2013-2015. Data of correlation of don and nitrate concentrations shown in Figure S4 a and doc and don concentrations shown in Figure S4 b. Variate    Description crop    “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” year    year of the observation don    don concentration (milliGrams_N_Per_Liter) no3     no3 concentration (milliGrams_N_Per_Liter) doc    doc concentration (milliGrams_Per_Liter) 
    more » « less
  3. Agriculture is a major water user, especially in dry and drought-prone areas that rely on irrigation to support agricultural production. In recent years, the over-extraction of groundwater, exacerbated by climate change, population growth, and intensive agricultural irrigation, has led to a drop in water levels and influenced the hydrological cycle. Understanding changes in hydrological processes is essential for pursuing water sustainability. This study aims to estimate the amount and impact of irrigation on hydrological processes in two breadbasket regions, Jing-Jin-Ji (JJJ), China, and northern Texas (NTX), US. We used the Soil and Water Assessment Tool (SWAT) to explore spatiotemporal variations of irrigation from 2008 to 2013 and compared changes in hydrological processes caused by irrigation. The results indicated that deficit irrigation is more common in JJJ than in NTX and can reduce approximately 50 % of irrigation water use in areas with intensively irrigated cropland. The applied irrigation varies less over time in NTX but fluctuates in JJJ. Compared with NTX, the higher irrigation intensity in JJJ results in a more significant change in downstream peak streamflow of around 6 m3/s. Moreover, the difference in crop growing seasons can lead to different impacts of irrigation on hydrological processes. For example, the percentage change of surface runoff under real-world relative to the no-irrigation scenario was the greatest, around 40 %, in JJJ and NTX. However, the peak change occurred at different times, with the nearing maturity of winter wheat in May in JJJ and corn in August in NTX. The great potential to reduce groundwater extraction by adopting water conservation irrigation techniques calls for policies and regulations to help farmers shift towards more sustainable water management practices. 
    more » « less
  4. Abstract Objectives

    Human responses to climate variation have a rich anthropological history. However, much less is known about how people living in small‐scale societies perceive climate change, and what climate data are useful in predicting food production at a scale that affects daily lives.

    Methods

    We use longitudinal ethnographic interviews and economic data to first ask what aspects of climate variation affect the agricultural cycle and food production for Yucatec Maya farmers. Sixty years of high‐resolution meteorological data and harvest assessments are then used to detect the scale at which climate data predict good and bad crop yields, and to analyze long‐term changes in climate variables critical to food production.

    Results

    We find that (a) only local, daily precipitation closely fits the climate pattern described by farmers. Other temporal (annual and monthly) scales miss key information about what farmers find important to successful harvests; (b) at both community‐ and municipal‐levels, heavy late‐season rains associated with tropical storms have the greatest negative impact on crop yields; and (c) in contrast to long‐term patterns from regional and state data, local measures show an increase in rainfall during the late growing season, indicating that fine‐grained data are needed to make accurate inferences about climate trends.

    Conclusion

    Our findings highlight the importance to define climate variables at scales appropriate to human behavior. Course‐grained annual, monthly, national, and state‐level data tell us little about climate attributes pertinent to farmers and food production. However, high‐resolution daily, local precipitation data do capture how climate variation shapes food production.

     
    more » « less
  5. Abstract

    Accurate estimation of crop yield predictions is of great importance for food security under the impact of climate change. We propose a data-driven crop model that combines the knowledge advantage of process-based modeling and the computational advantage of data-driven modeling. The proposed model tracks the daily biomass accumulation process during the maize growing season and uses daily produced biomass to estimate the final grain yield. Computational studies using crop yield, field location, genotype and corresponding environmental data were conducted in the US Corn Belt region from 1981 to 2020. The results suggest that the proposed model can achieve an accurate prediction performance with a 7.16% relative root-mean-square-error of average yield in 2020 and provide scientifically explainable results. The model also demonstrates its ability to detect and separate interactions between genotypic parameters and environmental variables. Additionally, this study demonstrates the potential value of the proposed model in helping farmers achieve higher yields by optimizing seed selection.

     
    more » « less