skip to main content


Title: Energy and bandwidth efficiency optimization of quantum-enabled optical communication channels
Abstract

We present a systematic study of quantum receivers and modulation methods enabling resource efficient quantum-enhanced optical communication. We introduce quantum-inspired modulation schemes that theoretically yield a better resource efficiency than legacy protocols. Experimentally, we demonstrate below the shot-noise limit symbol error rates forM ≤ 16 legacy and quantum-inspired communication alphabets using software-configurable optical communication time-resolving quantum receiver testbed. Further, we experimentally verify that our quantum-inspired modulation schemes boost the accuracy of practical quantum measurements and significantly optimize the combined use of energy and bandwidth for communication alphabets that are longer thanM = 4 symbols.

 
more » « less
Award ID(s):
1927674
NSF-PAR ID:
10367613
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Quantum Information
Volume:
8
Issue:
1
ISSN:
2056-6387
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We experimentally demonstrate a quantum-measurement-based receiver for a range of modulation schemes and alphabet lengths in a telecom C-band. We attain symbol error rates below the shot noise limit for all the studied modulation schemes and the alphabet lengths 4≤M≤16. In doing so, we achieve the record energy sensitivity for telecom receivers. We investigate the trade-off between energy and bandwidth use and its dependence on the alphabet length. We identify the combined (energy and bandwidth) resource efficiency as a figure of merit and experimentally confirm that the quantum-inspired hybrid frequency/phase encoding has the highest combined resource efficiency. 
    more » « less
  2. null (Ed.)
    We introduce new modulation schemes and experimentally verify that they enhance the accuracy of practical quantum measurements and significantly optimize the combined use of energy and bandwidth for long communication alphabets. 
    more » « less
  3. n/a (Ed.)
    We experimentally explore single-shot state identification using long alphabets of states and employing different modulation schemes. We use time-resolved quantum measurement and Bayesian inference to identify the input state and demonstrate the advantage of this single-shot measurement over classical state identification. For each single-shot measurement, we estimate the confidence of state identification based on the quantum measurement and demonstrate the physical significance of confidence estimates. Particularly, we show that a set of confidence values correctly represents the probabilities of successful state identification for a given experimental outcome. We investigate the alphabets of coherent states with different modulations and show that confidence estimates yield the reliability of each act of measurement independently of the modulation used. 
    more » « less
  4. Abstract

    Programmable photonic integrated circuits (PICs) are emerging as powerful tools for control of light, with applications in quantum information processing, optical range finding, and artificial intelligence. Low-power implementations of these PICs involve micromechanical structures driven capacitively or piezoelectrically but are often limited in modulation bandwidth by mechanical resonances and high operating voltages. Here we introduce a synchronous, micromechanically resonant design architecture for programmable PICs and a proof-of-principle 1×8 photonic switch using piezoelectric optical phase shifters. Our design purposefully exploits high-frequency mechanical resonances and optically broadband components for larger modulation responses on the order of the mechanical quality factorQmwhile maintaining fast switching speeds. We experimentally show switching cycles of all 8 channels spaced by approximately 11 ns and operating at 4.6 dB average modulation enhancement. Future advances in micromechanical devices with highQm, which can exceed 10000, should enable an improved series of low-voltage and high-speed programmable PICs.

     
    more » « less
  5. Abstract

    To achieve universal quantum computation via general fault-tolerant schemes, stabilizer operations must be supplemented with other non-stabilizer quantum resources. Motivated by this necessity, we develop a resource theory for magic quantum channels to characterize and quantify the quantum ‘magic’ or non-stabilizerness of noisy quantum circuits. For qudit quantum computing with odd dimensiond, it is known that quantum states with non-negative Wigner function can be efficiently simulated classically. First, inspired by this observation, we introduce a resource theory based on completely positive-Wigner-preserving quantum operations as free operations, and we show that they can be efficiently simulated via a classical algorithm. Second, we introduce two efficiently computable magic measures for quantum channels, called the mana and thauma of a quantum channel. As applications, we show that these measures not only provide fundamental limits on the distillable magic of quantum channels, but they also lead to lower bounds for the task of synthesizing non-Clifford gates. Third, we propose a classical algorithm for simulating noisy quantum circuits, whose sample complexity can be quantified by the mana of a quantum channel. We further show that this algorithm can outperform another approach for simulating noisy quantum circuits, based on channel robustness. Finally, we explore the threshold of non-stabilizerness for basic quantum circuits under depolarizing noise.

     
    more » « less