skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Energy and bandwidth efficiency optimization of quantum-enabled optical communication channels
Abstract We present a systematic study of quantum receivers and modulation methods enabling resource efficient quantum-enhanced optical communication. We introduce quantum-inspired modulation schemes that theoretically yield a better resource efficiency than legacy protocols. Experimentally, we demonstrate below the shot-noise limit symbol error rates forM ≤ 16 legacy and quantum-inspired communication alphabets using software-configurable optical communication time-resolving quantum receiver testbed. Further, we experimentally verify that our quantum-inspired modulation schemes boost the accuracy of practical quantum measurements and significantly optimize the combined use of energy and bandwidth for communication alphabets that are longer thanM = 4 symbols.  more » « less
Award ID(s):
1927674
PAR ID:
10367613
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Quantum Information
Volume:
8
Issue:
1
ISSN:
2056-6387
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We introduce new modulation schemes and experimentally verify that they enhance the accuracy of practical quantum measurements and significantly optimize the combined use of energy and bandwidth for long communication alphabets. 
    more » « less
  2. We experimentally demonstrate a quantum-measurement-based receiver for a range of modulation schemes and alphabet lengths in a telecom C-band. We attain symbol error rates below the shot noise limit for all the studied modulation schemes and the alphabet lengths 4≤M≤16. In doing so, we achieve the record energy sensitivity for telecom receivers. We investigate the trade-off between energy and bandwidth use and its dependence on the alphabet length. We identify the combined (energy and bandwidth) resource efficiency as a figure of merit and experimentally confirm that the quantum-inspired hybrid frequency/phase encoding has the highest combined resource efficiency. 
    more » « less
  3. n/a (Ed.)
    We experimentally explore single-shot state identification using long alphabets of states and employing different modulation schemes. We use time-resolved quantum measurement and Bayesian inference to identify the input state and demonstrate the advantage of this single-shot measurement over classical state identification. For each single-shot measurement, we estimate the confidence of state identification based on the quantum measurement and demonstrate the physical significance of confidence estimates. Particularly, we show that a set of confidence values correctly represents the probabilities of successful state identification for a given experimental outcome. We investigate the alphabets of coherent states with different modulations and show that confidence estimates yield the reliability of each act of measurement independently of the modulation used. 
    more » « less
  4. Abstract To achieve universal quantum computation via general fault-tolerant schemes, stabilizer operations must be supplemented with other non-stabilizer quantum resources. Motivated by this necessity, we develop a resource theory for magic quantum channels to characterize and quantify the quantum ‘magic’ or non-stabilizerness of noisy quantum circuits. For qudit quantum computing with odd dimensiond, it is known that quantum states with non-negative Wigner function can be efficiently simulated classically. First, inspired by this observation, we introduce a resource theory based on completely positive-Wigner-preserving quantum operations as free operations, and we show that they can be efficiently simulated via a classical algorithm. Second, we introduce two efficiently computable magic measures for quantum channels, called the mana and thauma of a quantum channel. As applications, we show that these measures not only provide fundamental limits on the distillable magic of quantum channels, but they also lead to lower bounds for the task of synthesizing non-Clifford gates. Third, we propose a classical algorithm for simulating noisy quantum circuits, whose sample complexity can be quantified by the mana of a quantum channel. We further show that this algorithm can outperform another approach for simulating noisy quantum circuits, based on channel robustness. Finally, we explore the threshold of non-stabilizerness for basic quantum circuits under depolarizing noise. 
    more » « less
  5. Abstract The achievable rate of information transfer in optical communications is determined by the physical properties of the communication channel, such as the intrinsic channel noise. Bosonic phase noise channels, a class of non-Gaussian channels, have emerged as a relevant noise model in quantum information and optical communication. However, while the fundamental limits for communication over Gaussian channels have been extensively studied, the properties of communication over Bosonic phase noise channels are not well understood. Here we propose and demonstrate experimentally the concept of optimized communication strategies for communication over phase noise channels to enhance information transfer beyond what is possible with conventional methods of modulation and detection. Two key ingredients are generalized constellations of coherent states that interpolate between standard on-off keying and binary phase-shift keying formats, and non-Gaussian measurements based on photon number resolving detection of the coherently displaced signal. For a given power constraint and channel noise strength, these novel strategies rely on joint optimization of the input alphabet and the measurement to provide enhanced communication capability over a non-Gaussian channel characterized in terms of the error rate as well as mutual information. 
    more » « less