skip to main content


Title: Thermalization of Fluorescent Protein Exciton–Polaritons at Room Temperature
Abstract

Fluorescent proteins (FPs) have recently emerged as a serious contender for realizing ultralow threshold room temperature exciton–polariton condensation and lasing. This contribution investigates the thermalization of FP microcavity exciton–polaritons upon optical pumping under ambient conditions. Polariton cooling is realized using a new FP molecule, called mScarlet, coupled strongly to the optical modes in a Fabry–Pérot cavity. Interestingly, at the threshold excitation energy (fluence) of ≈9 nJ per pulse (15.6 mJ cm−2), an effective temperature is observed,Teff ≈ 350 ± 35 K close to the lattice temperature indicative of strongly thermalized exciton–polaritons at equilibrium. This efficient thermalization results from the interplay of radiative pumping facilitated by the energetics of the lower polariton branch and the cavityQ‐factor. Direct evidence for dramatic switching from an equilibrium state into a metastable state is observed for the organic cavity polariton device at room temperature via deviation from the Maxwell–Boltzmann statistics atk = 0 above the threshold. Thermalized polariton gases in organic systems at equilibrium hold substantial promise for designing room temperature polaritonic circuits, switches, and lattices for analog simulation.

 
more » « less
Award ID(s):
1936351
NSF-PAR ID:
10367616
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
34
Issue:
15
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In addition to their attractive technological applications in photovoltaics and light emitters, the perovskite family of semiconductors has recently emerged as an excellent excitonic material for fundamental studies. Specifically, the 2D hybrid organic-inorganic perovskite (HOIP) offers the added advantage of room temperature investigations owing to their large exciton binding energy. In this work, we strongly couple excitons in 2D HOIP crystals to planar microcavity photons sustaining exciton-polaritons under ambient conditions resulting in a Rabi splitting of 290 meV. Dark excitons directly pump the polariton branch along its dispersion in resonance with the Stokes shifted emission state (radiative pumping), creating a high density of polaritons at higher in-plane momentum (k||). We further probe the nonlinear polariton dispersion dynamics at varying input laser fluence, which indicates efficient polariton-polariton scattering and decay tok|| = 0 from higherk||. The observation of Stokes shift-assisted energy exchange of dark states with lower polaritons coupled with evidence of efficient polariton-polariton scattering makes 2D HOIPs an attractive platform to study exciton-polariton many-body physics and Bose-Einstein like condensation (BEC) at room temperature.

     
    more » « less
  2. Abstract

    Quantum fluids exhibit quantum mechanical effects at the macroscopic level, which contrast strongly with classical fluids. Gain-dissipative solid-state exciton-polaritons systems are promising emulation platforms for complex quantum fluid studies at elevated temperatures. Recently, halide perovskite polariton systems have emerged as materials with distinctive advantages over other room-temperature systems for future studies of topological physics, non-Abelian gauge fields, and spin-orbit interactions. However, the demonstration of nonlinear quantum hydrodynamics, such as superfluidity and Čerenkov flow, which is a consequence of the renormalized elementary excitation spectrum, remains elusive in halide perovskites. Here, using homogenous halide perovskites single crystals, we report, in both one- and two-dimensional cases, the complete set of quantum fluid phase transitions from normal classical fluids to scatterless polariton superfluids and supersonic fluids—all at room temperature, clear consequences of the Landau criterion. Specifically, the supersonic Čerenkov wave pattern was observed at room temperature. The experimental results are also in quantitative agreement with theoretical predictions from the dissipative Gross-Pitaevskii equation. Our results set the stage for exploring the rich non-equilibrium quantum fluid many-body physics at room temperature and also pave the way for important polaritonic device applications.

     
    more » « less
  3. We show that concept of parity-time (PT) symmetry can be expanded to include mixed photon-exciton modes by demonstrating that eigenmodes of active (pumped) strongly coupled cavity polaritons with population inversion exhibit characteristics that are remarkably akin to those of coupled photonic structures with parity-time symmetry. The exceptional point occurs when the Rabi splitting of polariton branches inherent in passive polaritonic systems decreases with increase in pumping, leading to population inversion, and eventually two polaritonic modes merge into a single mode, thus manifesting the frequency pulling effect inherent to all lasers. But, remarkably, this exceptional point occurs below the lasing threshold. Furthermore, unlike most manifestations of PT symmetry in optics, which are observed in the interaction between two analogous photonic modes in waveguides or cavities, in this work the exceptional point is found in interaction between two very dissimilar modes—one photonic and one material excitation (exciton). Aside from fundamentally noteworthy expansion of the concept of PT symmetry to new systems, there is a prospect of using the exceptional point in polaritons for practical applications, such as sensing.

     
    more » « less
  4. Abstract The emergence of spatial and temporal coherence of light emitted from solid-state systems is a fundamental phenomenon intrinsically aligned with the control of light-matter coupling. It is canonical for laser oscillation, emerges in the superradiance of collective emitters, and has been investigated in bosonic condensates of thermalized light, as well as exciton-polaritons. Our room temperature experiments show the strong light-matter coupling between microcavity photons and excitons in atomically thin WSe 2 . We evidence the density-dependent expansion of spatial and temporal coherence of the emitted light from the spatially confined system ground-state, which is accompanied by a threshold-like response of the emitted light intensity. Additionally, valley-physics is manifested in the presence of an external magnetic field, which allows us to manipulate K and K’ polaritons via the valley-Zeeman-effect. Our findings validate the potential of atomically thin crystals as versatile components of coherent light-sources, and in valleytronic applications at room temperature. 
    more » « less
  5. Abstract

    Deterministic positioning single site-controlled high symmetric InGaAs quantum dots (QDs) in (111)B-oriented GaAs photonic crystal cavities with nanometer-scale accuracy provides an idea component for building integrated quantum photonic circuits. However, it has been a long-standing challenge of improving cavityQ-factors in such systems. Here, by optimizing the trade-off between the cavity loss and QD spectral quality, we demonstrate our site-controlled QD-nanocavity system operating in the intermediate coupling regime mediated by phonon scattering, with the dynamic coexistence of strong and weak coupling. The cavity-exciton detuning-dependent micro-photoluminescence spectrum reveals concurrence of a trend of exciton-polariton mode avoided crossing, as a signature of Rabi doublet of the strongly coupled system. Meanwhile, a trend of keeping constant or slight blue shift of coupled exciton–cavity mode(CM) energy across zero-detuning is ascribed to the formation of collective states mediated by phonon-assisted coupling, and their rare partial out-of-synchronization linewidth-narrowing is linked to their coexisting strong-weak coupling regime. We further reveal the pump power-dependent anti-bunching photon statistical dynamics of this coexisting strong-weak coupled system and the optical features of strongly confined exciton-polaritons, and dark-exciton-like states. These observations demonstrate the potential capabilities of site-controlled QD-cavity systems as deterministic quantum nodes for on-chip quantum information processing and provide guidelines for future device optimization for achieving the strong coupling regime.

     
    more » « less