The presence of exposed land on the early Earth is a prerequisite for a certain type of prebiotic chemical evolution in which the oscillating activity of water, driven by short-term, day–night, and seasonal cycles, facilitates the synthesis of proto-biopolymers. Exposed land is, however, not guaranteed to exist on the early Earth, which is likely to have been drastically different from the modern Earth. This mini-review attempts to provide an up-to-date account on the possibility of exposed land on the early Earth by integrating recent geological and geophysical findings. Owing to the competing effects of the growing ocean and continents in the Hadean, a substantial expanse of the Earth’s surface (∼20% or more) could have been covered by exposed continents in the mid-Hadean. In contrast, exposed land may have been limited to isolated ocean islands in the late Hadean and early Archean. The importance of exposed land during the origins of life remains an open question.
more »
« less
Colonizing the Caribbean: New geological data and an updated land‐vertebrate colonization record challenge the GAARlandia land‐bridge hypothesis
Abstract Over the past three decades, the hypothesized mid‐Cenozoic GAARlandia walkway (34 ± 1 Ma) has featured prominently in discussions on Caribbean biogeography. However, a fundamental issue has been a lack of geological and geophysical data from the Aves Ridge with which to evaluate the proposal. Consequently, opinions have been based purely on biological data, mainly from molecular‐clock studies but also from fossils and taxonomic composition. For whatever reasons, a polarization of views has occurred; some champion the land‐bridge to explain the colonizations of the island group, whereas others prefer over‐water dispersal. We examine the hypothesis drawing upon an updated compilation of land‐vertebrate colonizations (35 clades: 6 amphibian, 6 mammal and 23 reptile) plus a newly published geological study of the Aves Ridge and the adjacent Grenada Basin (to the east). The former indicates that the colonizations were heavily filtered and assembled in a piecemeal fashion consistent with over‐water dispersal; a mid‐Cenozoic ecological corridor would likely have led to a richer assemblage with a wider variety of components. The latter, which draws upon drill‐core and seismic data, indicates that the southern and central Aves Ridge was submerged at the aforesaid time. With the GAARlandia hypothesis geologically falsified, many biogeographical scenarios that have been proposed for the Greater Antillean biota now require re‐evaluation.
more »
« less
- Award ID(s):
- 1932765
- PAR ID:
- 10367644
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of Biogeography
- Volume:
- 48
- Issue:
- 11
- ISSN:
- 0305-0270
- Page Range / eLocation ID:
- p. 2699-2707
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Avian diversification has been influenced by global climate change, plate tectonic movements, and mass extinction events. However, the impact of these factors on the diversification of the hyperdiverse perching birds (passerines) is unclear because family level relationships are unresolved and the timing of splitting events among lineages is uncertain. We analyzed DNA data from 4,060 nuclear loci and 137 passerine families using concatenation and coalescent approaches to infer a comprehensive phylogenetic hypothesis that clarifies relationships among all passerine families. Then, we calibrated this phylogeny using 13 fossils to examine the effects of different events in Earth history on the timing and rate of passerine diversification. Our analyses reconcile passerine diversification with the fossil and geological records; suggest that passerines originated on the Australian landmass ∼47 Ma; and show that subsequent dispersal and diversification of passerines was affected by a number of climatological and geological events, such as Oligocene glaciation and inundation of the New Zealand landmass. Although passerine diversification rates fluctuated throughout the Cenozoic, we find no link between the rate of passerine diversification and Cenozoic global temperature, and our analyses show that the increases in passerine diversification rate we observe are disconnected from the colonization of new continents. Taken together, these results suggest more complex mechanisms than temperature change or ecological opportunity have controlled macroscale patterns of passerine speciation.more » « less
-
Abstract Irrigation representation in land surface models has been advanced over the past decade, but the soil moisture (SM) data from SMAP satellite have not yet been utilized in large‐scale irrigation modeling. Here we investigate the potential of improving irrigation representation in the Community Land Model version‐4.5 (CLM4.5) by assimilating SMAP data. Simulations are conducted over the heavily irrigated central U.S. region. We find that constraining the target SM in CLM4.5 using SMAP data assimilation with 1‐D Kalman filter reduces the root‐mean‐square error of simulated irrigation water requirement by 50% on average (for Nebraska, Kansas, and Texas) and significantly improves irrigation simulations by reducing the bias in irrigation water requirement by up to 60%. An a priori bias correction of SMAP data further improves these results in some regions but incrementally. Data assimilation also enhances SM simulations in CLM4.5. These results could provide a basis for improved modeling of irrigation and land‐atmosphere interactions.more » « less
-
Quantifying physical mechanisms driving sea-level change—including global mean sea level (GMSL) and regional-to-local components (that is, sea-level budget)—is essential for reliable future projections and effective coastal management1,2. Although previous research has attempted to resolve China’s sea-level budget from the 1950s3,4, these studies capture short timescales and lack the long-term context necessary to fully assess modern sea-level rise in southeastern China5—one of the world’s most densely populated regions with immense socioeconomic importance6. Here we show that GMSL followed three distinct stages from 11,700 years before present (BP) to the modern day: (1) rapid early Holocene rise driven by the deglacial melt of land ice; (2) 4,000 years of stability from around 4200 BP to the mid-nineteenth century when regional processes dominated sea-level change; and (3) accelerating rise from the mid-nineteenth century. Our results arise from spatiotemporal hierarchical modelling of geological sea-level proxies and tide gauge data to produce site-specific sea-level budget estimates with uncertainty quantification. It is extremely likely (P ≥ 0.95) that the GMSL rise rate since 1900 (1.51 ± 0.16 mm year−1, 1σ) has exceeded any century over at least the past four millennia. Moreover, our analysis indicates that at least 94% of rapid modern urban subsidence is attributable to anthropogenic activities, with localized subsidence rates often exceeding GMSL rise. Such concurrent acceleration of global sea-level rise and rapid localized subsidence has not been observed in our Holocene geological record.more » « less
-
NA (Ed.)Over the past three decades, assessments of the contemporary global carbon budget consistently report a strong net land carbon sink. Here, we review evidence supporting this paradigm and quantify the differences in global and Northern Hemisphere estimates of the net land sink derived from atmospheric inversion and satellite-derived vegetation biomass time series. Our analysis, combined with additional synthesis, supports a hypothesis that the net land sink is substantially weaker than commonly reported. At a global scale, our estimate of the net land carbon sink is 0.8 ± 0.7 petagrams of carbon per year from 2000 through 2019, nearly a factor of two lower than the Global Carbon Project estimate. With concurrent adjustments to ocean (+8%) and fossil fuel (−6%) fluxes, we develop a budget that partially reconciles key constraints provided by vegetation carbon, the north-south CO2gradient, and O2trends. We further outline potential modifications to models to improve agreement with a weaker land sink and describe several approaches for testing the hypothesis.more » « less
An official website of the United States government
