skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Utilizing SMAP Soil Moisture Data to Constrain Irrigation in the Community Land Model
Abstract Irrigation representation in land surface models has been advanced over the past decade, but the soil moisture (SM) data from SMAP satellite have not yet been utilized in large‐scale irrigation modeling. Here we investigate the potential of improving irrigation representation in the Community Land Model version‐4.5 (CLM4.5) by assimilating SMAP data. Simulations are conducted over the heavily irrigated central U.S. region. We find that constraining the target SM in CLM4.5 using SMAP data assimilation with 1‐D Kalman filter reduces the root‐mean‐square error of simulated irrigation water requirement by 50% on average (for Nebraska, Kansas, and Texas) and significantly improves irrigation simulations by reducing the bias in irrigation water requirement by up to 60%. An a priori bias correction of SMAP data further improves these results in some regions but incrementally. Data assimilation also enhances SM simulations in CLM4.5. These results could provide a basis for improved modeling of irrigation and land‐atmosphere interactions.  more » « less
Award ID(s):
1752729
PAR ID:
10452709
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
45
Issue:
23
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Crop growth depends on the root-zone soil moisture (RZSM) (~top 1m). Accurate estimation of RZSM is vital to optimize irrigation management for saving water and energy while sustaining crop yield. The High-Resolution Land Assimilation System (HRLDAS) from NCAR can generate RZSM at field scales for irrigation management. The soil moisture data from various agriculture sites in the AmeriFlux network, U.S. Climate Reference Network (USCRN), and Soil Climate Analysis Network (SCAN) are used to verify the soil moisture products generated by HRLDAS. Although the HRLDAS products is not location specific and could be applied nationwide, this study will focus on Nebraska for evaluation, validation, and further calibration. We also compared NASA’s SMAP surface soil moisture products to HRLDAS surface layer soil moisture. Since the accuracy of the SMAP product is known, this comparison directly validates the HRLDAS surface soil moisture product and indirectly validate its RZSM products. Results from these two validation methods show a good accuracy of HRLDAS soil moisture products. The conspicuous differences between HRLDAS and SMAP products indicate that HRLDAS omits the irrigation activities as its simulation is based on weather variables and energy balance. It’s hard for HRLDAS to consider and include the irrigation actions in its results, while as SMAP products remotely sense the soil moisture as it is, the changes caused by irrigation are clearly reflected. Therefore, a simple calibration is applied to the HRLDAS products by including irrigation amount as its variables. 
    more » « less
  2. Abstract This study investigates the impact of direct versus indirect initialization of soil moisture (SM) and soil temperature (ST) on monsoon depressions (MDs) and heavy rainfall simulations over India. SM/ST products obtained from high‐resolution, land data assimilation system (LDAS) are used in the direct initialization of land surface conditions in the ARW modeling system. In the indirect method, the initial SM is sequentially adjusted through the flux‐adjusting surface data assimilation system (FASDAS). These two approaches are compared with a control experiment (CNTL) involving climatological SM/ST conditions for eight MDs at 4‐km horizontal resolution. The surface fields simulated by the LDAS run showed the highest agreement, followed by FASDAS for relatively dry June cases, but the error is high (~15–30%) for the relatively wet August cases. The moisture budget indicates that moisture convergence and local influence contributed more to rainfall. The surface‐rainfall feedback analysis reveals that surface conditions and evaporation have a dominant impact on the rainfall simulation and these couplings are notable in LDAS runs. The contiguous rain area (CRA) method indicates better performance of LDAS for very heavy rainfall distribution, and the location (ETS > 0.2), compared to FASDAS and CNTL. The pattern error contributes the maximum to the total rainfall error, and the displacement error is more in August cases' rainfall than that in June cases. Overall analyses indicated that the role of land conditions is significantly high in the drier month (June) than a wet month (August), and direct initialization of SM/ST fields yielded improved MD and heavy rain simulations. 
    more » « less
  3. Irrigation is the primary consumer of freshwater by humans and accounts for over 70% of all annual water use. However, due to the shortage of open critical information in agriculture such as soil, precipitation, and crop status, farmers heavily rely on empirical knowledge to schedule irrigation and tend to excessive irrigation to ensure crop yields. This paper presents WaterSmart-GIS, a web-based geographic information system (GIS), to collect and disseminate near-real-time information critical for irrigation scheduling, such as soil moisture, evapotranspiration, precipitation, and humidity, to stakeholders. The disseminated datasets include both numerical model results of reanalysis and forecasting from HRLDAS (High-Resolution Land Data Assimilation System), and the remote sensing datasets from NASA SMAP (Soil Moisture Active Passive) and MODIS (Moderate-Resolution Imaging Spectroradiometer). The system aims to quickly and easily create a smart, customized irrigation scheduler for individual fields to relieve the burden on farmers and to significantly reduce wasted water, energy, and equipment due to excessive irrigation. The system is prototyped here with an application in Nebraska, demonstrating its ability to collect and deliver information to end-users via the web application, which provides online analytic functionality such as point-based query, spatial statistics, and timeseries query. Systems such as this will play a critical role in the next few decades to sustain agriculture, which faces great challenges from climate change and increased natural disasters. 
    more » « less
  4. Abstract The Consistent Artificial Intelligence (AI)-based Soil Moisture (CASM) dataset is a global, consistent, and long-term, remote sensing soil moisture (SM) dataset created using machine learning. It is based on the NASA Soil Moisture Active Passive (SMAP) satellite mission SM data and is aimed at extrapolating SMAP-like quality SM back in time using previous satellite microwave platforms. CASM represents SM in the top soil layer, and it is defined on a global 25 km EASE-2 grid and for 2002–2020 with a 3-day temporal resolution. The seasonal cycle is removed for the neural network training to ensure its skill is targeted at predicting SM extremes. CASM comparison to 367 globalin-situSM monitoring sites shows a SMAP-like median correlation of 0.66. Additionally, the SM product uncertainty was assessed, and both aleatoric and epistemic uncertainties were estimated and included in the dataset. CASM dataset can be used to study a wide range of hydrological, carbon cycle, and energy processes since only a consistent long-term dataset allows assessing changes in water availability and water stress. 
    more » « less
  5. Irrigation can affect climate and weather patterns from regional to global scales through the alteration of surface water and energy balances. Here, we couple a land-surface model (LSM) that includes various human land-water management activities including irrigation with an atmospheric general circulation model (AGCM) to examine the impacts of irrigation-induced land disturbance on the subseasonal predictability of near-surface variables. Results indicate that the simulated global irrigation and groundwater withdrawals (circa 2000) are ~3600 and ~370 km3/year, respectively, which are in good agreement with previous estimates from country statistics and offline–LSMs. Subseasonal predictions for boreal summers during the 1986–1995 period suggest that the spread among ensemble simulations of air temperature can be substantially reduced by using realistic land initializations considering irrigation-induced changes in soil moisture. Additionally, it is found that the subseasonal forecast skill for near-surface temperature and sea level pressure significantly improves when human-induced land disturbance is accounted for in the AGCM. These results underscore the need to incorporate irrigation into weather forecast models, such as the global forecast system. 
    more » « less