skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Intramolecular Charge Transfer in the Azathioprine Prodrug Quenches Intersystem Crossing to the Reactive Triplet State in 6‐Mercaptopurine †
Abstract The thiopurine prodrugs 6‐mercaptopurine and azathioprine are among the world’s essential medications for acute lymphoblastic leukemia, immunosuppression and several autoimmune conditions. Thiopurine prodrugs are efficient UVA absorbers and singlet oxygen generators and the long‐term treatment with these prodrugs correlates with a high incidence of sunlight‐induced skin cancer in patients. In this contribution, we show that the electronic relaxation mechanisms and photochemical properties of azathioprine are remarkably different from those of 6‐mercaptopurine upon absorption of UVA radiation. UVA excitation of 6‐mercaptopurine results in nearly 100% triplet yield and up to 30% singlet oxygen generation, whereas excitation of azathioprine with UVA leads to triplet yields of 15–3% depending on pH of the aqueous solution and <1% singlet oxygen generation. While photoexcitation of 6‐mercaptopurine and other thiopurine prodrugs can facilitate oxidatively generated cell damage, azathioprine's poor photosensitization ability reveals the use of interchromophoric charge‐transfer interactions for the molecular design of photostable prodrugs exhibiting a remarkable reduction in photocytotoxic side effects before drug metabolization.  more » « less
Award ID(s):
1800052
PAR ID:
10367668
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Photochemistry and Photobiology
Volume:
98
Issue:
3
ISSN:
0031-8655
Page Range / eLocation ID:
p. 617-632
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Criegee intermediates make up a class of molecules that are of significant atmospheric importance. Understanding their electronically excited states guides experimental detection and provides insight into whether solar photolysis plays a role in their removal from the troposphere. The latter is particularly important for large and functionalized Criegee intermediates. In this study, the excited state chemistry of two small Criegee intermediates, formaldehyde oxide (CH2OO) and acetaldehyde oxide (CH3CHOO), was modeled to compare their specific dynamics and mechanisms following excitation to the bright ππ* state and to assess the involvement of triplet states to the excited state decay process. Following excitation to the bright ππ* state, the photoexcited population exclusively evolves to form oxygen plus aldehyde products without the involvement of triplet states. This occurs despite the presence of a more thermodynamically stable triplet path and several singlet/triplet energy crossings at the Franck‐Condon geometry and contrasts with the photodynamics of related systems such as acetaldehyde and acetone. This work sets the foundations to study Criegee intermediates with greater molecular complexity, wherein a bathochromic shift in the electron absorption profiles may ensure greater removalviasolar photolysis. 
    more » « less
  2. We report high-level electronic structure calculations of electronic states in the miniSOG (for mini Singlet Oxygen Generator) photoactive protein designed to produce singlet oxygen upon light exposure. We consider a model system with a riboflavin (RF) chromophore. To better understand the photosensitization process, we compute relevant electronic states of the combined oxygen-chromophore system and their couplings. The calculations suggest that singlet oxygen can be produced both by inter-system crossing, via a triplet state of the RF(T1)×O2(3Σ− g ) character as well as by triplet excitation energy transfer via a singlet state of the same character. Importantly, the former channel produces O2(1Σ+ g ), an excited state of singlet oxygen, which is known to convert with unit efficiency into O2(1∆g) The calculations also provide evidence for the production of the triplet state of the chromophore via internal conversion facilitated by oxygen. Our results provide concrete support to previously hypothesized scenarios. 
    more » « less
  3. Abstract Toluidine blue O (TBO) is a water‐soluble photosensitizer that has been used in photodynamic antimicrobial and anticancer treatments, but suffers from limited solubility in hydrophobic media. In an effort to incrementally increase TBO’s hydrophobicity, we describe the synthesis of hexanoic (TBOC6) and myristic (TBOC14) fatty acid derivatives of TBO formed in low to moderate percent yields by condensation with the free amine site. Covalently linking 6 and 14 carbon chains led to modifications of not only TBO’s solubility, but also its photophysical and photochemical properties. TBOC6 and TBOC14 derivatives were more soluble in organic solvents and showed hypsochromic shifts in their absorption and emission bands. The solubility in phosphate buffer solution was low for both TBOC6 and TBOC14, but unexpectedly slightly greater in the latter. Both TBOC6 and TBOC14 showed decreased triplet excited‐state lifetimes and singlet oxygen quantum yields in acetonitrile, which was attributed to heightened aggregation of these conjugates particularly at high concentrations due to the hydrophobic “tails.” While in diluted aqueous buffer solution, indirect measurements showed similar efficiency in singlet oxygen generation for TBOC14 compared to TBO. This work demonstrates a facile synthesis of fatty acid TBO derivatives leading to amphiphilic compounds with a delocalized cationic “head” group and hydrophobic “tails” for potential to accumulate into biological membranes or membrane/aqueous interfaces in PDT applications. 
    more » « less
  4. Site-selected sulfur-substituted nucleobases are a class of all organic, heavy-atom-free photosensitizers for photodynamic therapy applications that exhibit excellent photophysical properties such as strong absorption in the ultraviolet-A region of the electromagnetic spectrum, near-unity triplet yields, and a high yield of singlet oxygen generation. Recent investigations on doubly thionated nucleobases, 2,4-dithiothymine, 2,4-dithiouracil, and 2,6-dithiopurine, demonstrated that these set of dithionated nucleobases outperform the photodynamic efficacy exhibit by 4-thiothymidine–the most widely studied singly substituted thiobase to date. Out of the three dithionated nucleobases, 2,6-dithiopurine was shown to be the most effective, exhibiting inhibition of cell proliferation of up to 63% when combined with a low UVA dose of 5 J cm −2 . In this study, we elucidated the electronic relaxation pathways leading to the population of the reactive triplet state of 2,6-dithiopurine. 2,6-Dithiopurine populates the triplet manifold in less than 150 fs, reaching the nπ* triplet state minimum within a lifetime of 280 ± 50 fs. Subsequently, the population in the nπ* triplet state minimum internally converts to the long-lived ππ* triplet state within a lifetime of 3 ± 1 ps. The relatively slow internal conversion lifetime is associated with major conformational relaxation in going from the nπ* to ππ* triplet state minimum. A unity triplet yield of 1.0 ± 0.1 is measured. 
    more » « less
  5. Abstract Although alkyl azides are known to typically form imines under direct irradiation, the product formation mechanism remains ambiguous as some alkyl azides also yield the corresponding triplet alkylnitrenes at cryogenic temperatures. The photoreactivity of 3‐azido‐3‐phenyl‐3H‐isobenzofuran‐1‐one (1) was investigated in solution and in cryogenic matrices. Irradiation (λ = 254 nm) of azide 1 in acetonitrile yielded a mixture of imines 2 and 3. Monitoring of the reaction progress using UV‐Vis absorption spectroscopy revealed an isosbestic point at 210 nm, indicating that the reaction proceeded cleanly. Similar results were observed for the photoreactivity of azide 1 in a frozen 2‐methyltetrahydrofuran (mTHF) matrix. Irradiation of azide 1 in an argon matrix at 6 K resulted in the disappearance of its IR bands with the concurrent appearance of IR bands corresponding to imines 2 and 3. Thus, it was theorized that azide 1 forms imines 2 and 3 via a concerted mechanism from its singlet excited state or through singlet alkylnitrene11N, which does not intersystem cross to its triplet configuration. This proposal was supported by CASPT2 calculations on a model system, which suggested that the energy gap between the singlet and triplet configurations of alkylnitrene 1N is 33 kcal/mol, thus making intersystem crossing inefficient. 
    more » « less