skip to main content


Title: Fish-inspired segment models for undulatory steady swimming
Abstract

Many aquatic animals swim by undulatory body movements and understanding the diversity of these movements could unlock the potential for designing better underwater robots. Here, we analyzed the steady swimming kinematics of a diverse group of fish species to investigate whether their undulatory movements can be represented using a series of interconnected multi-segment models, and if so, to identify the key factors driving the segment configuration of the models. Our results show that the steady swimming kinematics of fishes can be described successfully using parsimonious models, 83% of which had fewer than five segments. In these models, the anterior segments were significantly longer than the posterior segments, and there was a direct link between segment configuration and swimming kinematics, body shape, and Reynolds number. The models representing eel-like fishes with elongated bodies and fishes swimming at high Reynolds numbers had more segments and less segment length variability along the body than the models representing other fishes. These fishes recruited their anterior bodies to a greater extent, initiating the undulatory wave more anteriorly. Two shape parameters, related to axial and overall body thickness, predicted segment configuration with moderate to high success rate. We found that head morphology was a good predictor of its segment length. While there was a large variation in head segments, the length of tail segments was similar across all models. Given that fishes exhibited variable caudal fin shapes, the consistency of tail segments could be a result of an evolutionary constraint tuned for high propulsive efficiency. The bio-inspired multi-segment models presented in this study highlight the key bending points along the body and can be used to decide on the placement of actuators in fish-inspired robots, to model hydrodynamic forces in theoretical and computational studies, or for predicting muscle activation patterns during swimming.

 
more » « less
Award ID(s):
1856237 2102891
NSF-PAR ID:
10367735
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Bioinspiration & Biomimetics
Volume:
17
Issue:
4
ISSN:
1748-3182
Page Range / eLocation ID:
Article No. 046007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The anterior body of many fishes is shaped like an airfoil turned on its side. With an oscillating angle to the swimming direction, such an airfoil experiences negative pressure due to both its shape and pitching movements. This negative pressure acts as thrust forces on the anterior body. Here, we apply a high-resolution, pressure-based approach to describe how two fishes, bluegill sunfish (Lepomis macrochirusRafinesque) and brook trout (Salvelinus fontinalisMitchill), swimming in the carangiform mode, the most common fish swimming mode, generate thrust on their anterior bodies using leading-edge suction mechanics, much like an airfoil. These mechanics contrast with those previously reported in lampreys—anguilliform swimmers—which produce thrust with negative pressure but do so through undulatory mechanics. The thrust produced on the anterior bodies of these carangiform swimmers through negative pressure comprises 28% of the total thrust produced over the body and caudal fin, substantially decreasing the net drag on the anterior body. On the posterior region, subtle differences in body shape and kinematics allow trout to produce more thrust than bluegill, suggesting that they may swim more effectively. Despite the large phylogenetic distance between these species, and differences near the tail, the pressure profiles around the anterior body are similar. We suggest that such airfoil-like mechanics are highly efficient, because they require very little movement and therefore relatively little active muscular energy, and may be used by a wide range of fishes since many species have appropriately shaped bodies.

     
    more » « less
  2. Abstract

    Fishes generate force to swim by activating muscles on either side of their flexible bodies. To accelerate, they must produce higher muscle forces, which leads to higher reaction forces back on their bodies from the environment. If their bodies are too flexible, the forces during acceleration could not be transmitted effectively to the environment, but fish can potentially use their muscles to increase the effective stiffness of their body. Here, we quantified red muscle activity during acceleration and steady swimming, looking for patterns that would be consistent with the hypothesis of body stiffening. We used high-speed video, electromyographic recordings, and a new digital inertial measurement unit to quantify body kinematics, red muscle activity, and 3D orientation and centre of mass acceleration during forward accelerations and steady swimming over several speeds. During acceleration, fish co-activated anterior muscle on the left and right side, and activated all muscle sooner and kept it active for a larger fraction of the tail beat cycle. These activity patterns are both known to increase effective stiffness for muscle tissuein vitro, which is consistent with our hypothesis that fish use their red muscle to stiffen their bodies during acceleration. We suggest that during impulsive movements, flexible organisms like fishes can use their muscles not only to generate propulsive power but to tune the effective mechanical properties of their bodies, increasing performance during rapid movements and maintaining flexibility for slow, steady movements.

     
    more » « less
  3. Fishes exhibit an astounding diversity of locomotor behaviors from classic swimming with their body and fins to jumping, flying, walking, and burrowing. Fishes that use their body and caudal fin (BCF) during undulatory swimming have been traditionally divided into modes based on the length of the propulsive body wave and the ratio of head:tail oscillation amplitude: anguilliform, subcarangiform, carangiform, and thunniform. This classification was first proposed based on key morphological traits, such as body stiffness and elongation, to group fishes based on their expected swimming mechanics. Here, we present a comparative study of 44 diverse species quantifying the kinematics and morphology of BCF-swimming fishes. Our results reveal that most species we studied share similar oscillation amplitude during steady locomotion that can be modeled using a second-degree order polynomial. The length of the propulsive body wave was shorter for species classified as anguilliform and longer for those classified as thunniform, although substantial variability existed both within and among species. Moreover, there was no decrease in head:tail amplitude from the anguilliform to thunniform mode of locomotion as we expected from the traditional classification. While the expected swimming modes correlated with morphological traits, they did not accurately represent the kinematics of BCF locomotion. These results indicate that even fish species differing as substantially in morphology as tuna and eel exhibit statistically similar two-dimensional midline kinematics and point toward unifying locomotor hydrodynamic mechanisms that can serve as the basis for understanding aquatic locomotion and controlling biomimetic aquatic robots. 
    more » « less
  4. null (Ed.)
    Abstract Swimming in schools has long been hypothesized to allow fish to save energy. Fish must exploit the energy from the wakes of their neighbors for maximum energy savings, a feat that requires them to both synchronize their tail movements and stay in certain positions relative to their neighbors. To maintain position in a school, we know that fish use multiple sensory systems, mainly their visual and flow sensing lateral line system. However, how fish synchronize their swimming movements in a school is still not well understood. Here we test the hypothesis that this synchronization may depend on functional differences in the two branches of the lateral line sensory system that detects water movements close to the fish’s body. The anterior branch, located on the head, encounters largely undisturbed free-stream flow, while the posterior branch, located on the trunk and tail, encounters flow that has been affected strongly by the tail movement. Thus, we hypothesize that the anterior branch may be more important for regulating position within the school, while the posterior branch may be more important for synchronizing tail movements. Our study examines functional differences in the anterior and posterior lateral line in the structure and tail synchronization of fish schools. We used a widely available aquarium fish that schools, the giant danio, Devario equipinnatus. Fish swam in a large circular tank where stereoscopic videos recordings were used to reconstruct the 3 D position of each individual within the school and to track tail kinematics to quantify synchronization. For one fish in each school, we ablated using cobalt chloride either the anterior region only, the posterior region only, or the entire lateral line system. We observed that ablating any region of the lateral line system causes fish to swim in a “box” or parallel swimming formation, which was different from the diamond formation observed in normal fish. Ablating only the anterior region did not substantially reduce tail beat synchronization but ablating only the posterior region caused fish to stop synchronizing their tail beats, largely because the tail beat frequency increased dramatically. Thus, the anterior and posterior lateral line system appear to have different behavioral functions in fish. Most importantly, we showed that the posterior lateral line system played a major role in determining tail beat synchrony in schooling fish. Without synchronization, swimming efficiency decreases, which can have an impact on the fitness of the individual fish and group. 
    more » « less
  5. Abstract

    Anguilliform swimmers, like eels or lampreys, are highly efficient swimmers. Key to understanding their performances is the relationship between the body’s kinematics and resulting swimming speed and efficiency. But, we cannot prescribe kinematics to living fish, and it is challenging to measure their power consumption. Here, we characterise the swimming speed and cost of transport of a free-swimming undulatory bio-inspired robot as we vary its kinematic parameters, including joint amplitude, body wavelength, and frequency. We identify a trade-off between speed and efficiency. Speed, in terms of stride length, increases for increasing maximum tail angle, described by the newly proposed specific tail amplitude and reaches a maximum value around the specific tail amplitude of unity. Efficiency, in terms of the cost of transport, is affected by the whole-body motion. Cost of transport decreases for increasing travelling wave-like kinematics, and lower specific tail amplitudes. Our results suggest that live eels tend to choose efficiency over speed and provide insights into the key characteristics affecting undulatory swimming performance.

     
    more » « less