skip to main content


Title: Soil Moisture Responses to Rainfall: Implications for Runoff Generation
Abstract

Soil moisture is a key control on runoff generation and biogeochemical processes on hillslopes. Precipitation events can evoke different soil moisture responses with depth through the soil profile, and responses can differ among landscape positions along a hillslope. We sought to elucidate the nature of these responses by estimating changes in water content, response time between peak precipitation and peak soil moisture, and wetting front velocities for 43 storms at 45 locations on three adjacent hillslopes within a headwater catchment of the southern Appalachian Mountains (NC, USA). We used a multivariate modeling approach to quantify the relative influences and the predictability of soil moisture responses by a combination of landscape and storm characteristics. We quantified the lag correlations between hillslope mean soil moisture and catchment runoff to demonstrate how storm properties and hillslope‐scale characteristics may influence runoff at the catchment outlet. Soil moisture responses varied widely, and no consistent patterns were observed among response metrics laterally or vertically along hillslopes. In contrast to other studies, we found that the relative influence of hillslope properties and storm characteristics varied with soil moisture responses and during storms. Antecedent conditions and storm depths influenced the strength of lag correlations between soil moisture and runoff, whereas storm mean intensity was correlated with the lag times. These results highlight the utility of intensive observations for characterizing heterogeneity in soil moisture responses, suggesting, among other things, a need for better representation of the subsurface processes in rainfall‐runoff models. Identifying the relative importance of drivers can be beneficial in building parsimonious hydrological models.

 
more » « less
NSF-PAR ID:
10367768
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
57
Issue:
9
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Hydrologic connectivity refers to the processes and thresholds leading to water transport across a landscape. In dryland ecosystems, runoff production is mediated by the arrangement of vegetation and bare soil patches on hillslopes and the properties of ephemeral channels. In this study, we used runoff measurements at multiple scales in a small (4.67 ha) mixed shrubland catchment of the Chihuahuan Desert to identify controls on and thresholds of hillslope‐channel connectivity. By relating short‐ and long‐term hydrologic records, we also addressed whether observed changes in outlet discharge since 1977 were linked to modifications in hydrologic connectivity. Hillslope runoff production was controlled by the maximum rainfall intensity occurring in a 30‐min interval (I30), with small‐to‐negligible effects of antecedent surface soil moisture, vegetation cover, or slope aspect. AnI30threshold of nearly 10 mm/h activated runoff propagation from the shrubland hillslopes and through the main ephemeral channel, whereas anI30threshold of about 16 mm/h was required for discharge from the catchment outlet. Since storms rarely exceedI30, full hillslope‐channel connectivity occurs infrequently in the mixed shrubland, leading to <2% of the annual precipitation being converted into outlet discharge. Progressive decreases in outlet discharge since 1977 could not be explained by variations in precipitation metrics, includingI30, or the process of woody plant encroachment. Instead, channel modifications from the buildup of sediment behind measurement flumes may have increased transmission losses and reduced outlet discharge. Thus, alterations in channel properties can play an important role in the long‐term (45‐year) variations of rainfall–runoff dynamics of small desert catchments.

     
    more » « less
  2. Abstract

    Linking quickflow response to subsurface state can improve our understanding of runoff processes that drive emergent catchment behaviour. We investigated the formation of non‐linear quickflows in three forested headwater catchments and also explored unsaturated and saturated storage dynamics, and likely runoff generation mechanisms that contributed to threshold formation. Our analyses focused on two reference watersheds at the Coweeta Hydrologic Laboratory (CHL) in western North Carolina, USA, and one reference watershed at the Susquehanna Shale Hills Critical Zone Observatory (SHW) in Central Pennsylvania, USA, with available hourly soil moisture, groundwater, streamflow, and precipitation time series over several years. Our study objectives were to characterise (a) non‐linear runoff response as a function of storm characteristics and antecedent conditions, (b) the critical levels of shallow unsaturated and saturated storage that lead to hourly flow response, and (c) runoff mechanisms contributing to rapidly increasing quickflow using measurements of soil moisture and groundwater. We found that maximum hourly rainfall did not significantly contribute to quickflow production in our sites, in contrast to prior studies, due to highly conductive forest soils. Soil moisture and groundwater dynamics measured in hydrologically representative areas of the hillslope showed that variable subsurface states could contribute to non‐linear runoff behaviour. Quickflow generation in watersheds at CHL were dominated by both saturated and unsaturated pathways, but the relative contributions of each pathway varied between catchments. In contrast, quickflow was almost entirely related to groundwater fluctuations at SHW. We showed that co‐located measurements of soil moisture and groundwater supplement threshold analyses providing stronger prediction and understanding of quickflow generation and indicate dominant runoff processes.

     
    more » « less
  3. Abstract

    Wildfire increases the potential connectivity of runoff and sediment throughout watersheds due to greater bare soil, runoff and erosion as compared to pre‐fire conditions. This research examines the connectivity of post‐fire runoff and sediment from hillslopes (<1.5 ha;n= 31) and catchments (<1000 ha;n= 10) within two watersheds (<1500 ha) burned by the 2012 High Park Fire in northcentral Colorado, USA. Our objectives were to: (1) identify sources and quantify magnitudes of post‐fire runoff and erosion at nested hillslopes and watersheds for two rain storms with varied duration, intensity and antecedent precipitation; and (2) assess the factors affecting the magnitude and connectivity of runoff and sediment across spatial scales for these two rain storms. The two summer storms that are the focus of this research occurred during the third summer after burning. The first storm had low intensity rainfall over 11 hours (return interval <1–2 years), whereas the second event had high intensity rainfall over 1 hour (return interval <1–10 years). The lower intensity storm was preceded by high antecedent rainfall and led to low hillslope sediment yields and channel incision at most locations, whereas the high intensity storm led to infiltration‐excess overland flow, high sediment yields, in‐stream sediment deposition and channel substrate fining. For both storms, hillslope‐to‐stream sediment delivery ratios and area‐normalised cross‐sectional channel change increased with the percent of catchment that burned at high severity. For the high intensity storm, hillslope‐to‐stream sediment delivery ratios decreased with unconfined channel length (%). The findings quantify post‐fire connectivity and sediment delivery from hillslopes and streams, and highlight how different types of storms can cause varying magnitues and spatial patterns of sediment transport and deposition from hillslopes through stream channel networks.

     
    more » « less
  4. Abstract

    Hillslope topographic change in response to climate and climate change is a key aspect of landscape evolution. The impact of short‐duration rainstorms on hillslope evolution in arid regions is persistently questioned but often not directly examined in landscape evolution studies, which are commonly based on mean climate proxies. This study focuses on hillslope surface processes responding to rainstorms in the driest regions of Earth. We present a numerical model for arid, rocky hillslopes with lithology of a softer rock layer capped by a cliff‐forming resistant layer. By representing the combined action of bedrock and clast weathering, cliff‐debris ravel, and runoff‐driven erosion, the model can reproduce commonly observed cliff‐profile morphology. Numerical experiments with a fixed base level were used to test hillslope response to cliff‐debris grain size, rainstorm intensities, and alternation between rainstorm patterns. The persistence of vertical cliffs and the pattern of sediment sorting depend on rainstorm intensities and the size of cliff debris. Numerical experiments confirm that these two variables could have driven the landscape in the Negev Desert (Israel) toward an observed spatial contrast in topographic form over the past 105–106 years. For a given total storm rain depth, short‐duration higher‐intensity rainstorms are more erosive, resulting in greater cliff retreat distances relative to longer, low‐intensity storms. Temporal alternation between rainstorm regimes produces hillslope profiles similar to those previously attributed to Quaternary oscillations in the mean climate. We suggest that arid hillslopes may undergo considerable geomorphic transitions solely by alternating intra‐storm patterns regardless of rainfall amounts.

     
    more » « less
  5. Abstract

    The interleaving of impermeable and permeable surfaces along a runoff flow path controls the hillslope hydrograph, the spatial pattern of infiltration, and the distribution of flow velocities in landscapes dominated by overland flow. Predictions of the relationship between the pattern of (im)permeable surfaces and hydrological outcomes tend to fall into two categories: (i) generalized metrics of landscape pattern, often referred to as connectivity metrics, and (ii) direct simulation of specific hillslopes. Unfortunately, the success of using connectivity metrics for prediction is mixed, while direct simulation approaches are computationally expensive and hard to generalize. Here we present a new approach for prediction based on emulation of a coupled Saint Venant equation‐Richards equation model with random forest regression. The emulation model predicts infiltration and peak flow velocities for every location on a hillslope with an arbitrary spatial pattern of impermeable and permeable surfaces but fixed soil, slope, and storm properties. It provides excellent fidelity to the physically based model predictions and is generalizable to novel spatial patterns. The spatial pattern features that explain most of the hydrological variability are not stable across different soils, slopes, and storms, potentially explaining some of the difficulties associated with direct use of spatial metrics for predicting landscape function. Although the current emulator relies on strong assumptions, including smooth topography, binary permeability fields, and only a small collection of soils, slope, and storm scenarios, it offers a promising way forward for applications in dryland and urban settings and in supporting the development of potential connectivity indices.

     
    more » « less