We consider the problem of optimal control of district cooling energy plants (DCEPs) consisting of multiple chillers, a cooling tower, and a thermal energy storage (TES), in the presence of time-varying electricity price. A straightforward application of model predictive control (MPC) requires solving a challenging mixed-integer nonlinear program (MINLP) because of the on/off of chillers and the complexity of the DCEP model. Reinforcement learning (RL) is an attractive alternative since its real-time control computation is much simpler. But designing an RL controller is challenging due to myriad design choices and computationally intensive training. In this paper, we propose an RL controller and an MPC controller for minimizing the electricity cost of a DCEP and compare them via simulations. The two controllers are designed to be comparable in terms of objective and information requirements. The RL controller uses a novel Q-learning algorithm that is based on least-squares policy iteration. We describe the design choices for the RL controller, including the choice of state space and basis functions, that are found to be effective. The proposed MPC controller does not need a mixed integer solver for implementation, but only a nonlinear program (NLP) solver. A rule-based baseline controller is also proposed to aid in comparison. Simulation results show that the proposed RL and MPC controllers achieve similar savings over the baseline controller, about 17%.
more »
« less
MultiGrid on FPGA Using Data Parallel C++
Centered on modern C++ and the SYCL standard for heterogeneous programming, Data Parallel C++ (dpc++) and Intel's oneAPI software ecosystem aim to lower the barrier to entry for the use of accelerators like FPGAs in diverse applications. In this work, we consider the usage of FPGAs for scientific computing, in particular with a multigrid solver, MueLu. We report on early experiences implementing kernels of the solver in DPC++ for execution on Stratix 10 FPGAs, and we evaluate several algorithmic design and implementation choices. These choices not only impact performance, but also shed light on the capabilities and limitations of DPC++ and oneAPI.
more »
« less
- Award ID(s):
- 2016701
- PAR ID:
- 10367855
- Date Published:
- Journal Name:
- IPDSPW
- Page Range / eLocation ID:
- 907 to 910
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract To overcome the spatial resolution limit set by aperture-limited diffraction in traditional scanning transmission electron microscopy, microscopists have developed ptychography enabled by iterative phase retrieval algorithms and high-dynamic-range pixel array detectors. Current detector designs are limited by the data rate off chip, so a high-pixel-count detector has a proportionally lower frame rate than the few-segment detectors used for differential phase contrast (DPC) imaging. This slower acquisition speed leads to heightened vulnerability to scan noise, drift, and potential sample damage. This creates opportunities for repurposing fast segmented detectors for ptychography by trading a reduction in reciprocal space pixels for an increase in real space pixels. Here, we explore a strategy of oversampling in real space and instead apply detector pixel upsampling during the reconstruction process. We demonstrate the viability of achieving super-resolution ptychography on thin objects using only 2 × 2 detector pixels, surpassing the resolution of integrated DPC (iDPC) imaging. With optimization using simulated datasets and experiments on MoTe2/WSe2 bilayer moiré superlattices, we achieved super-resolution ptychography reconstructions under rapid acquisition conditions (37.5 pA, 1 μs dwell time), yielding over 50% improvements in contrast and information limit compared to annular dark field and iDPC imaging on the same detectors.more » « less
-
The end of Moore’s Law and Dennard scaling has driven the proliferation of heterogeneous systems with accelerators, including CPUs, GPUs, and FPGAs, each with distinct architectures, compilers, and programming environments. GPUs excel at massively parallel processing for tasks like deep learning training and graphics rendering, while FPGAs offer hardware-level flexibility and energy efficiency for low-latency, high-throughput applications. In contrast, CPUs, while general-purpose, often fall short in high-parallelism or power-constrained applications. This architectural diversity makes it challenging to compare these accelerators effectively, leading to uncertainty in selecting optimal hardware and software tools for specific applications. To address this challenge, we introduce HeteroBench, a versatile benchmark suite for heterogeneous systems. HeteroBench allows users to evaluate multi-compute kernel applications across various accelerators, including CPUs, GPUs (from NVIDIA, AMD, Intel), and FPGAs (AMD), supporting programming environments of Python, Numba-accelerated Python, serial C++, OpenMP (both CPUs and GPUs), OpenACC and CUDA for GPUs, and Vitis HLS for FPGAs. This setup enables users to assign kernels to suitable hardware platforms, ensuring comprehensive device comparisons. What makes HeteroBench unique is its vendor-agnostic, cross-platform approach, spanning diverse domains such as image processing, machine learning, numerical computation, and physical simulation, ensuring deeper insights for HPC optimization. Extensive testing across multiple systems provides practical reference points for HPC practitioners, simplifying hardware selection and performance tuning for both developers and end-users alike. This suite may assist to make more informed decision on AI/ML deployment and HPC development, making it an invaluable resource for advancing academic research and industrial applications.more » « less
-
Octo-Tiger is a code for modeling three-dimensional self-gravitating astrophysical fluids. It was particularly designed for the study of dynamical mass transfer between interacting binary stars. Octo-Tiger is parallelized for distributed systems using the asynchronous many-task runtime system, the C++ standard library for parallelism and concurrency (HPX) and utilizes CUDA for its gravity solver. Recently, we have remodeled Octo-Tiger’s hydro solver to use a three-dimensional reconstruction scheme. In addition, we have ported the hydro solver to GPU using CUDA kernels. We present scaling results for the new hydro kernels on ORNL’s Summit machine using a Sedov-Taylor blast wave problem. We also compare Octo-Tiger’s new hydro scheme with its old hydro scheme, using a rotating star as a test problem.more » « less
-
This paper presents an enhanced version of a scalable HLS (High-Level Synthesis) framework named ScaleHLS, which can compile HLS C/C++ programs and PyTorch models to highly-efficient and synthesizable C++ designs. The original version of ScaleHLS achieved significant speedup on both C/C++ kernels and PyTorch models [14]. In this paper, we first highlight the key features of ScaleHLS on tackling the challenges present in the representation, optimization, and exploration of large-scale HLS designs. To further improve the scalability of ScaleHLS, we then propose an enhanced HLS transform and analysis library supported in both C++ and Python, and a new design space exploration algorithm to handle HLS designs with hierarchical structures more effectively. Comparing to the original ScaleHLS, our enhanced version improves the speedup by up to 60.9× on FPGAs. ScaleHLS is fully open-sourced at https://github.com/hanchenye/scalehls.more » « less
An official website of the United States government

