skip to main content


Title: Multi‐Proxy, Multi‐Season Streamflow Reconstruction With Mass Balance Adjustment
Abstract

Despite having offered important hydroclimatic insights, streamflow reconstructions still see limited use in water resources operations, because annual reconstructions are not suitable for decisions at finer time scales. The few attempts toward sub‐annual reconstructions have relied on statistical disaggregation, which uses none or little proxy information. Here, we develop a novel framework that optimizes proxy combinations to simultaneously produce seasonal and annual reconstructions. Importantly, the framework ensures that total seasonal flow matches annual flow closely. This mass balance criterion is necessary to avoid misguiding water management decisions, such as the allocation of water rights or dam release decisions. Using the framework, and leveraging a multi‐species network of ring width and celluloseO in Southeast Asia, we reconstruct seasonal and annual inflow to Thailand's largest reservoir. The reconstructions are statistically skillful. Furthermore, they preserve the mass balance well: the differences are mostly within 10% of the mean annual flow. As a result, the reconstructions provide more reliable estimates of the seasonal and annual surface water availability. This work is one step closer toward operational usability of streamflow reconstruction in water resources management.

 
more » « less
Award ID(s):
2001949
NSF-PAR ID:
10367927
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
57
Issue:
8
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The selective use of seasonal precipitation by vegetation is critical to understanding the residence time and flow path of water in watersheds, yet there are limited datasets to test how climate alters these dynamics. Here, we use measurements of the seasonal cycle of tree ringO for two widespread conifer species in the Rocky Mountains of North America to provide a multi‐decadal depiction of the seasonal origins of forest water use. The results show that while the conifer tree stands had a dominant preference for use of snowmelt, there were multi‐annual periods over the last four decades when use of summer precipitation was preferential. Utilization of summer rain emerged during years with increased snowfall and tree growth, suggesting that summer rain enhanced the transpiration stream only during the periods of highest water use. We hypothesize this could be explained through shallowing of the root profile during wetter periods and/or through the influence of changing water table depths on the residence time of summer precipitation in the root zone. We suggest the tree ring proxy approach used here could be applied in other watersheds to provide critical insight into the temporal dynamics of plant water use that could not be inferred from short measurement campaigns. These data on the seasonal origins of forest water are critical for understanding forest vulnerability to drought, the processes that affect precipitation pathways and residence time in watersheds and the interpretation of tree ring proxy data.

     
    more » « less
  2. Abstract

    In field observations from a sinuous estuary, the drag coefficientbased on the momentum balance was in the range of, much greater than expected from bottom friction alone.also varied at tidal and seasonal timescales.was greater during flood tides than ebbs, most notably during spring tides. The ebb tidewas negatively correlated with river discharge, while the flood tideshowed no dependence on discharge. The large values ofare explained by form drag from flow separation at sharp channel bends. Greater water depths during flood tides corresponded with increased values of, consistent with the expected depth dependence for flow separation, as flow separation becomes stronger in deeper water. Additionally, the strength of the adverse pressure gradient downstream of the bend apex, which is indicative of flow separation, correlated withduring flood tides. Whilegenerally increased with water depth,decreased for the highest water levels that corresponded with overbank flow. The decrease inmay be due to the inhibition of flow separation with flow over the vegetated marsh. The dependence ofduring ebbs on discharge corresponds with the inhibition of flow separation by a favoring baroclinic pressure gradient that is locally generated at the bend apex due to curvature‐induced secondary circulation. This effect increases with stratification, which increases with discharge. Additional factors may contribute to the high drag, including secondary circulation, multiple scales of bedforms, and shallow shoals, but the observations suggest that flow separation is the primary source.

     
    more » « less
  3. Abstract

    Flows into and out of the Gulf of Mexico (GoM) are integral to North Atlantic Ocean circulation and help facilitate poleward heat transport in the Western Hemisphere. The GoM also serves as a key source of moisture for most of North America. Modern patterns of sea‐surface temperature (SST) and salinity in the GoM are influenced by the Loop Current, its eddy‐shedding dynamics, and the ensuing interplay with coastal processes. Here, we present sub‐centennial‐scale records of SST and stable oxygen isotope composition of seawater (18Osw; a proxy for salinity) over the past 11,700 years using planktic foraminiferal geochemistry in sediments from the Garrison Basin, northwestern GoM. We measuredO and magnesium‐to‐calcium ratios in tests ofGlobigerinoides ruber(white) to generate quantitative estimates of past sea‐surface conditions. Our results replicate and extend late Holocene reconstructions from the Garrison Basin, using which we then create composites of SST and18Osw. We find considerable centennial and millennial‐scale variability in both SST and18Osw, although their evolution over the Holocene is distinct. Whereas mean‐annual SSTs display pronounced millennial‐scale variability,18Oswexhibits a secular trend spanning multiple millennia and points to increasing northwestern GoM surface salinity since the early Holocene. We then synthesize the available Holocene records from across the GoM and alongside the Garrison Basin composite uncover substantial, yet regionally consistent, spatiotemporal variability. Finally, we discuss the role of the Loop Current and coastal influx of freshwater in imposing these heterogeneities. We conclude that dynamic surface‐ocean changes occurred across the GoM over the Holocene.

     
    more » « less
  4. Abstract

    The oxygen isotopic composition of planktic foraminiferal calcite () is one of the most prevalent proxies used in the paleoceanographic community. The relationship between, temperature, and seawater oxygen isotopic composition () is firmly rooted in thermodynamics, and experimental constraints are commonly used for sea surface temperature (SST) reconstructions. However, in marine sedimentary applications, additional sources of uncertainty emerge, and these uncertainty constraints have not as of yet been included in global calibration models. Here, we compile a global data set of over 2,600 marine sediment core top samples for five planktic species:Globigerinoides ruber,Trilobatus sacculifer,Globigerina bulloides,Neogloboquadrina incompta, andNeogloboquadrina pachyderma. We developed a suite of Bayesian regression models to calibrate the relationship betweenand SST. Spanning SSTs from 0.0 to 29.5 °C, our annual model with species pooled together has a mean standard error of approximately 0.54‰. Accounting for seasonality and species‐specific differences improves model validation, reducing the mean standard error to 0.47‰. Example applications spanning the Late Quaternary show good agreement with independent alkenone‐based estimates. Our pooled calibration model may also be used for reconstruction in the deeper geological past, using modern planktic foraminifera as an analog for non‐extant species. Our core top‐based models provide a robust assessment of uncertainty in thepaleothermometer that can be used in statistical assessments of interproxy and model‐proxy comparisons. The suite of models is publicly available as the Open Source software librarybayfox, for Python, R, and MATLAB/Octave.

     
    more » « less
  5. Abstract

    Predicting the proportion of the water year a given stream will remain at or above various flow thresholds is critically important for making sound water management decisions. Flow duration curves (FDCs) succinctly capture this information using all data available over some historical period, while annual flow duration curves (AFDCs) instead use data from each individual water year. Analyzing the population of AFDCs, and in particular the tails of this distribution, can allow water managers to better prepare for years with extreme streamflow conditions. However, long time series of observations are necessary to capture interannual streamflow variations and are problematic to obtain in rapidly changing and poorly gauged catchments. By incorporating a process‐based model to construct AFDCs based on daily rainfall statistics and flow recession characteristics, the proposed approach is a first step toward addressing this challenge. Results indicate that prediction performance varies substantially across flow quantiles and that the current model fails to properly capture the interannual variability of low flows. Numerical analyses attributed these errors to nonlinearity in storage‐discharge relation, rather than cross‐scale streamflow correlations and non‐Poissonian rainfall, explaining the origin of commonly observed heavy‐tailed behavior in low flow quantiles. We present a case study on hydroelectric power generation, showing that faithfully capturing both interannual streamflow variability and recession nonlinearity has important implications for installation profitability.

     
    more » « less