skip to main content


Search for: All records

Award ID contains: 2001949

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Despite having offered important hydroclimatic insights, streamflow reconstructions still see limited use in water resources operations, because annual reconstructions are not suitable for decisions at finer time scales. The few attempts toward sub‐annual reconstructions have relied on statistical disaggregation, which uses none or little proxy information. Here, we develop a novel framework that optimizes proxy combinations to simultaneously produce seasonal and annual reconstructions. Importantly, the framework ensures that total seasonal flow matches annual flow closely. This mass balance criterion is necessary to avoid misguiding water management decisions, such as the allocation of water rights or dam release decisions. Using the framework, and leveraging a multi‐species network of ring width and celluloseO in Southeast Asia, we reconstruct seasonal and annual inflow to Thailand's largest reservoir. The reconstructions are statistically skillful. Furthermore, they preserve the mass balance well: the differences are mostly within 10% of the mean annual flow. As a result, the reconstructions provide more reliable estimates of the seasonal and annual surface water availability. This work is one step closer toward operational usability of streamflow reconstruction in water resources management.

     
    more » « less
  2. Abstract

    Photosynthetic traits suggest that shade tolerance may explain the contrasting success of two conifer taxa, Podocarpaceae and Pinaceae, in tropical forests. Needle‐leaved species fromPinus(Pinaceae) are generally absent from tropical forests, whereasPinus krempfii, a flat‐leaved pine, and numerous flat‐leaved Podocarpaceae are abundant. Respiration (R) traits may provide additional insight into the drivers of the contrasting success of needle‐ and flat‐leaved conifers in tropical forests.

    We measured the short‐term respiratory temperature (RT) response between 10 and 50°C and foliar morphological traits of three needle‐ and seven flat‐leaved conifer species coexisting in a tropical montane forest in the Central Highlands of Vietnam containing notable conifer diversity. We fit a lognormal polynomial model to each RT curve and extracted the following three parameters:a(basalR), andbandc(together describing the shape of the response).

    Needle‐leaved species (Pinus kesiya,Pinus dalatensisandDacrydium elatum) had higher rates of area‐basedRat 25°C (R25‐area) as well as higher area‐based modelled basal respiration (a) than flat‐leaved species (P. krempfii,Podocarpus neriifolius,Dacrycarpus imbricatus,Nageia nana,Taxus wallichiana,Keteeleria evelynianaandFokienia hodginsii). No significant differences were found between needle‐ and flat‐leaved species in mass‐basedR25(R25‐mass) or in the shape of the RT response (bandc); however, interspecific differences inR25‐mass,Rat nighttime temperature extremes (R4.1andR20.6) and leaf traits were apparent.

    Differences inR25‐areaandasuggest that needle‐leaved foliage may be more energetically costly to maintain than flat‐leaved foliage, providing new insight and additional support for the hypothesis that shade tolerance is an important driver of Podocarpaceae success and Pinaceae absence in the majority of tropical forests.

    Interspecific differences inR25‐massand leaf traits highlight that varying ecological strategies are employed by conifers to coexist and survive in the Central Highlands of Vietnam. Ultimately, these data further our understanding of current conifer biogeographical distributions and underscore the need for additional studies to elucidate the effects of extreme temperature events on the continued survival of conifers in this unique forest.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less