Abstract BackgroundAdding sequences into an existing (possibly user-provided) alignment has multiple applications, including updating a large alignment with new data, adding sequences into a constraint alignment constructed using biological knowledge, or computing alignments in the presence of sequence length heterogeneity. Although this is a natural problem, only a few tools have been developed to use this information with high fidelity. ResultsWe present EMMA (Extending Multiple alignments using MAFFT--add) for the problem of adding a set of unaligned sequences into a multiple sequence alignment (i.e., a constraint alignment). EMMA builds on MAFFT--add, which is also designed to add sequences into a given constraint alignment. EMMA improves on MAFFT--add methods by using a divide-and-conquer framework to scale its most accurate version, MAFFT-linsi--add, to constraint alignments with many sequences. We show that EMMA has an accuracy advantage over other techniques for adding sequences into alignments under many realistic conditions and can scale to large datasets with high accuracy (hundreds of thousands of sequences). EMMA is available athttps://github.com/c5shen/EMMA. ConclusionsEMMA is a new tool that provides high accuracy and scalability for adding sequences into an existing alignment.
more »
« less
SeqScreen: accurate and sensitive functional screening of pathogenic sequences via ensemble learning
Abstract The COVID-19 pandemic has emphasized the importance of accurate detection of known and emerging pathogens. However, robust characterization of pathogenic sequences remains an open challenge. To address this need we developed SeqScreen, which accurately characterizes short nucleotide sequences using taxonomic and functional labels and a customized set of curated Functions of Sequences of Concern (FunSoCs) specific to microbial pathogenesis. We show our ensemble machine learning model can label protein-coding sequences with FunSoCs with high recall and precision. SeqScreen is a step towards a novel paradigm of functionally informed synthetic DNA screening and pathogen characterization, available for download atwww.gitlab.com/treangenlab/seqscreen.
more »
« less
- Award ID(s):
- 2126387
- PAR ID:
- 10367978
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Genome Biology
- Volume:
- 23
- Issue:
- 1
- ISSN:
- 1474-760X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract BackgroundThe pan-genome of a species is the union of the genes and non-coding sequences present in all individuals (cultivar, accessions, or strains) within that species. ResultsHere we introduce PGV, a reference-agnostic representation of the pan-genome of a species based on the notion of consensus ordering. Our experimental results demonstrate that PGV enables an intuitive, effective and interactive visualization of a pan-genome by providing a genome browser that can elucidate complex structural genomic variations. ConclusionsThe PGV software can be installed via conda or downloaded fromhttps://github.com/ucrbioinfo/PGV. The companion PGV browser athttp://pgv.cs.ucr.educan be tested using example bed tracks available from the GitHub page.more » « less
-
Abstract The widespread misuse of antibiotics has escalated antibiotic resistance into a critical global public health concern. Beyond antibiotics, metals function as antibacterial agents. Metal resistance genes (MRGs) enable bacteria to tolerate metal-based antibacterials and may also foster antibiotic resistance within bacterial communities through co-selection. Thus, predicting bacterial MRGs is vital for elucidating their involvement in antibiotic resistance and metal tolerance mechanisms. The “best hit” approach is mainly utilized to identify and annotate MRGs. This method is sensitive to cutoff values and produces a high false negative rate. Other than the best hit approach, only a few antimicrobial resistance (AMR) detection tools exist for predicting MRGs. However, these tools lack comprehensive annotation for MRGs conferring resistance to multiple metals. To address such limitations, we introduce DeepMRG, a deep learning-based multi-label classifier, to predict bacterial MRGs. Because a bacterial MRG can confer resistance to multiple metals, DeepMRG is designed as a multi-label classifier capable of predicting multiple metal labels associated with an MRG. It leverages bit score-based similarity distribution of sequences with experimentally verified MRGs. To ensure unbiased model evaluation, we employed a clustering method to partition our dataset into six subsets, five for cross-validation and one for testing, with non-homologous sequences, mitigating the impact of sequence homology. DeepMRG consistently achieved high overall F1-scores and significantly reduced false negative rates across a wide range of datasets. It can be used to predict bacterial MRGs in metagenomic or isolate assemblies. The web server of DeepMRG can be accessed athttps://deepmrg.cs.vt.edu/deepmrgand the source code is available athttps://github.com/muhit-emon/DeepMRGunder the MIT license.more » « less
-
Abstract Spatial transcriptomics (ST) technologies enable high throughput gene expression characterization within thin tissue sections. However, comparing spatial observations across sections, samples, and technologies remains challenging. To address this challenge, we develop STalign to align ST datasets in a manner that accounts for partially matched tissue sections and other local non-linear distortions using diffeomorphic metric mapping. We apply STalign to align ST datasets within and across technologies as well as to align ST datasets to a 3D common coordinate framework. We show that STalign achieves high gene expression and cell-type correspondence across matched spatial locations that is significantly improved over landmark-based affine alignments. Applying STalign to align ST datasets of the mouse brain to the 3D common coordinate framework from the Allen Brain Atlas, we highlight how STalign can be used to lift over brain region annotations and enable the interrogation of compositional heterogeneity across anatomical structures. STalign is available as an open-source Python toolkit athttps://github.com/JEFworks-Lab/STalignand as Supplementary Software with additional documentation and tutorials available athttps://jef.works/STalign.more » « less
-
Abstract The DESI Milky Way Survey (MWS) will observe ≥8 million stars between 16 < r < 19 mag, supplemented by observations of brighter targets under poor observing conditions. The survey will permit an accurate determination of stellar kinematics and population gradients, characterize diffuse substructure in the thick disk and stellar halo, enable the discovery of extremely metal-poor stars and other rare stellar types, and improve constraints on the Galaxy’s 3D dark matter distribution from halo star kinematics. MWS will also enable a detailed characterization of the stellar populations within 100 pc of the Sun, including a complete census of white dwarfs. The target catalog from the preliminary selection described here is public (Available at https://data.desi.lbl.gov/public/ets/target/catalogs/and detailed at https://desidatamodel.readthedocs.io).more » « less
An official website of the United States government
