skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: MSWIM2D: Two-dimensional Outer Heliosphere Solar Wind Modeling
Abstract The vast size of the Sun’s heliosphere, combined with sparse spacecraft measurements over that large domain, makes numerical modeling a critical tool to predict solar wind conditions where there are no measurements. This study models the solar wind propagation in 2D using the BATSRUS MHD solver to form the MSWIM2D data set of solar wind in the outer heliosphere. Representing the solar wind from 1 to 75 au in the ecliptic plane, a continuous model run from 1995–present has been performed. The results are available for free athttp://csem.engin.umich.edu/mswim2d/. The web interface extracts output at desired locations and times. In addition to solar wind ions, the model includes neutrals coming from the interstellar medium to reproduce the slowing of the solar wind in the outer heliosphere and to extend the utility of the model to larger radial distances. The inclusion of neutral hydrogen is critical to recreating the solar wind accurately outside of ∼4 au. The inner boundary is filled by interpolating and time-shifting in situ observations from L1 and STEREO spacecraft when available. Using multiple spacecraft provides a more accurate boundary condition than a single spacecraft with time shifting alone. Validations of MSWIM2D are performed using MAVEN and New Horizons observations. The results demonstrate the efficacy of this model to propagate the solar wind to large distances and obtain practical, useful solar wind predictions. For example, the rms error of solar wind speed prediction at Mars is only 66 km s−1and at Pluto is a mere 25 km s−1 more » « less
Award ID(s):
1663800 2031019
PAR ID:
10368011
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Supplement Series
Volume:
260
Issue:
2
ISSN:
0067-0049
Format(s):
Medium: X Size: Article No. 43
Size(s):
Article No. 43
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The outer heliosphere is profoundly influenced by nonthermal energetic pickup ions (PUIs), which dominate the internal pressure of the solar wind beyond ~10 au, surpassing both solar wind and magnetic pressures. PUIs are formed mostly through charge exchange between interstellar neutral atoms and solar wind ions. This study examines the apparent heating of PUIs in the distant supersonic solar wind before reaching the heliospheric termination shock. New Horizons’ SWAP observations reveal an unexpected PUI temperature change between 2015 and 2020, with a notable bump in PUI temperature. Concurrent observations from the ACE and Wind spacecraft at 1 au indicate a ~50% increase in solar wind dynamic pressure at the end of 2014. Our simulation suggests that the bump observed in the PUI temperature by New Horizons is largely associated with the enhanced solar wind dynamic pressure observed at 1 au. Additional PUI temperature enhancements imply the involvement of other heating mechanisms. Analysis of New Horizons data reveals a correlation between shocks and PUI heating during the declining phase of the solar cycle. Using a PUI-mediated plasma model, we explore shock structures and PUI heating, finding that shocks preferentially heat PUIs over the thermal solar wind in the outer heliosphere. We also show that the broad shock thickness observed by New Horizons is due to the large diffusion coefficient associated with PUIs. Shocks and compression regions in the distant supersonic solar wind lead to elevated PUI temperatures and thus they can increase the production of energetic neutral atoms with large energy. 
    more » « less
  2. Abstract Interstellar pickup ions are an ubiquitous and thermodynamically important component of the solar wind plasma in the heliosphere. These PUIs are born from the ionization of the interstellar neutral gas, consisting of hydrogen, helium, and trace amounts of heavier elements, in the solar wind as the heliosphere moves through the local interstellar medium. As cold interstellar neutral atoms become ionized, they form an energetic ring beam distribution comoving with the solar wind. Subsequent scattering in pitch angle by intrinsic and self-generated turbulence and their advection with the radially expanding solar wind leads to the formation of a filled-shell PUI distribution, whose density and pressure relative to the thermal solar wind ions grows with distance from the Sun. This paper reviews the history of in situ measurements of interstellar PUIs in the heliosphere. Starting with the first detection in the 1980s, interstellar PUIs were identified by their highly nonthermal distribution with a cutoff at twice the solar wind speed. Measurements of the PUI distribution shell cutoff and the He focusing cone, a downwind region of increased density formed by the solar gravity, have helped characterize the properties of the interstellar gas from near-Earth vantage points. The preferential heating of interstellar PUIs compared to the core solar wind has become evident in the existence of suprathermal PUI tails, the nonadiabatic cooling index of the PUI distribution, and PUIs’ mediation of interplanetary shocks. Unlike the Voyager and Pioneer spacecraft, New Horizon’s Solar Wind Around Pluto (SWAP) instrument is taking the only direct measurements of interstellar PUIs in the outer heliosphere, currently out to $$\sim47~\text{au}$$ ∼ 47 au from the Sun or halfway to the heliospheric termination shock. 
    more » « less
  3. Abstract We introduce the first solar-cycle simulations from our 3D, global MHD-plasma/kinetic-neutrals model, where both hydrogen and helium atoms are treated kinetically, while electrons and helium ions are described as individual fluids. Using Voyager/PWS observations of electron density up to 160 au from the Sun for validation of several different global models, we conclude that the current estimates for the proton density in the local interstellar medium (LISM) need a revision. Our findings indicate that the commonly accepted value of 0.054 cm−3may need to be increased to values exceeding 0.07 cm−3. We also show how different assumptions regarding the proton velocity distribution function in the outer heliosheath may affect the global solution. A new feature revealed by our simulations is that the helium ion flow may be significantly compressed and heated in the heliotail at heliocentric distances exceeding ∼400 au. Additionally, we identify a Kelvin–Helmholtz instability at the boundary of the slow and fast solar wind in the inner heliosheath, which acts as a driver of turbulence in the heliotail. These results are crucial for inferring the properties of the LISM and of the global heliosphere structure. 
    more » « less
  4. Collisional analysis combines the effects of collisional relaxation and large-scale expansion to quantify how solar wind parameters evolve as the plasma expands through the heliosphere. Though previous studies have applied collisional analysis to the temperature ratio between protons (ionized hydrogen) andα-particles (fully ionized helium), this is the first study to exploreα-proton differential flow with collisional analysis. First, the mathematical model for the collisional analysis of differential flow was derived. Then, this model was applied to individualin-situobservations from Parker Solar Probe (PSP;r= 0.1–0.27 au) to generate predictions of theα-proton differential flow in the near-Earth solar wind. A comparison of these predicted values with contemporaneous measurements from the Wind spacecraft (r= 1.0 au) shows strong agreement, which may imply that the effects of expansion and Coulomb collisions have a large role in governing the evolution of differential flow through the inner heliosphere. 
    more » « less
  5. Abstract The widespread detection of 60 Fe in geological and lunar archives provides compelling evidence for recent nearby supernova explosions within ∼100 pc at 3 and 7 Myr ago. The blasts from these explosions had a profound effect on the heliosphere. We perform new calculations to study the compression of the heliosphere due to a supernova blast. Assuming a steady but non-isotropic solar wind, we explore a range of properties appropriate for supernova distances inspired by recent 60 Fe data, and for a 20 pc supernova proposed to account for mass extinctions at the end-Devonian period. We examine the locations of the termination shock decelerating the solar wind and the heliopause that marks the boundary between the solar wind and supernova material. Pressure balance scaling holds, consistent with studies of other astrospheres. Solar wind anisotropy does not have an appreciable effect on shock geometry. We find that supernova explosions at 50 pc (95 pc) lead to heliopause locations at 16 au (23 au) when the forward shock arrives. Thus, the outer solar system was directly exposed to the blast, but the inner planets—including Earth—were not. This finding reaffirms that the delivery of supernova material to Earth is not from the blast plasma itself, but likely is from supernova dust grains. After the arrival of the forward shock, the weakening supernova blast will lead to a gradual rebound of the heliosphere, taking ∼few × 100 kyr to expand beyond 100 au. Prospects for future work are discussed. 
    more » « less