skip to main content


Title: Mentoring Approaches that Support Minoritized STEM Undergraduates: A Pilot Study (EBR)
This work presents the research methods and preliminary results from a pilot study that assesses mentoring approaches used to support racially minoritized students in science, technology, engineering, and mathematics (STEM) fields. There is a national imperative to broaden participation of racially minoritized undergraduates in STEM fields as evidenced by reports and the recent calls for social justice and equity in these fields. In STEM, mentoring has been recognized as a mechanism that can help to support racially minoritized student populations (e.g., persons who identify as Black, Hispanic/Latinx, and American Indian/Alaskan Native). Yet for mentors in higher education, minimal examples exist that detail effective mentoring approaches, strategies, and competencies that support the persistence and success of minoritized mentees in STEM. In better understanding mentoring approaches, we can make visible how to better mentor these populations and help to employ more equitable mentoring participation. The research question guiding this study is: What approaches are used by mentors who help racially minoritized undergraduate mentees persist in STEM fields? Mentoring literature and two theoretical frameworks were leveraged to situate these mentoring experiences. Intersectionality theory is used to explore the role of compounding minoritized identities within the power contexts (i.e., structural, hegemonic, disciplinary, and interpersonal) of higher education. Community cultural wealth is also used as a lens to examine six forms of capital (i.e., family, social, navigational, aspirational, resistant, and linguistic) that may be used in mentoring practices with minoritized students. This paper will present the methods and findings from the pilot study, centering on the development of the team’s interview protocol. This work will provide insights about the piloting process of a larger study as well as initial emergent themes about the approaches and experiences of mentors who mentor minoritized undergraduate students in STEM.  more » « less
Award ID(s):
1942274
NSF-PAR ID:
10368061
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the Annual American Society of Engineering Education (ASEE) Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The National Science Foundation (NSF) Emerging Frontiers and Innovation (EFRI) Research Experience and Mentoring (REM) program nationally supports hands-on research and ongoing mentorship in STEM fields at various universities and colleges. The NSF EFRI-REM Mentoring Catalyst initiative was designed to build and train these robust, interactive research mentoring communities that are composed of faculty, postdoctoral associates and graduate student mentors, to broaden participation of underrepresented groups in STEM research who are funded through NSF EFRI-REM. This work-in-progress paper describes the first five years of this initiative, where interactive training programs were implemented from multiple frameworks of effective mentoring. Principal investigators, postdoctoral associates and graduate students are often expected to develop and establish mentoring plans without any formal training in how to be effective mentors. Since the start of this initiative, over 300 faculty, postdoctoral associates and graduate students have been trained on promising practices, strategies, and tools to enhance their research mentoring experiences. In addition to formal mentor training, opportunities to foster a community of practice with current mentors and past mentor training participants (sage mentors) were provided. During these interactions, promising mentoring practices were shared to benefit the mentors and the different mentoring populations that the EFRI-REMs serve. The community of practice connected a diverse group of institutions and faculty to help the EFRI-REM community in its goal of broadening participation across a range of STEM disciplines. Those institutions are then able to discuss, distill and disseminate best practices around the mentoring of participants through targeted mentored training beyond the EFRI-REM at their home institutions. Not only does the EFRI-REM Catalyst initiative focus on broadening participation via strategic training of research mentors, it also empowers mentees, including undergraduate and graduate students and postdoctoral associates, in their research experiences through an entering research undergraduate course and formal mentoring training workshops. Future expansion to other academic units (e.g., colleges, universities) builds on the research collaborations and the initiatives developed and presented in this work-in-progress paper. A long-term goal is to provide insights via collaborative meetings (e.g., webinars, presentations) for STEM and related faculty who are assembling an infrastructure (e.g., proposals for the ERFI-REM program) across a range of research structures. In summary, this work-in-progress paper provides a description of the design and implementation of this initiative, preliminary findings, expanding interactions to other NSF supported Engineering Research Centers, and the future directions of the EFRI-REM Mentoring Catalyst initiative. 
    more » « less
  2. Despite various efforts to broaden participation, racially marginalized students (i.e., Black, Hispanic/Latinx, and American Indian/Alaskan Native identifying people) continue to be underrepresented in Science, Technology, Engineering, and Math (STEM) fields and careers. Mentoring is recognized as a mechanism that has been shown to support the persistence and success of racially marginalized students in STEM through providing relevant resources, psychosocial support, and fostering identity development. This quantitative work aims to understand the mentoring competencies of mentors who support racially marginalized students in STEM. To promote effective mentoring, it is essential to understand the mentoring competencies of mentors from the perspective of both mentors and mentees. Understanding how mentees perceive various mentoring competencies can help mentors understand deficiencies in their skills to improve their mentoring practices. Using survey data collected from mentors and racially marginalized mentees, we assessed the mentoring competencies of mentors from the perspective of both mentors and mentees. The survey data includes demographic and academic information about mentors and mentees. In addition, using a pre-validated survey instrument, mentors and mentees rated the mentoring competencies of the mentors on a Likert scale across five constructs of mentoring. The five mentoring constructs include maintaining effective communication, aligning expectations, assessing understanding, fostering independence, and promoting professional development. Each construct consists of multiple items for a total of 26 survey items. We compared the mentors’ self-rated competencies with the ratings provided by the mentees to identify differences across demographics. Preliminary findings identify differences in the mentoring competencies of mentors from the perspective of both mentors and mentees. Recommendations for research and practice are also presented. 
    more » « less
  3. This paper offers a synthesis on computing identity and the experiences of women and minoritized populations in computing and computer science in higher education. Examining computing identity and its role in the computing experiences of minoritized undergraduates can help us better understand ways to engage and support women and minoritized individuals in the computing field thus increasing participation and persistence of these groups in computing. In this article, we present a review of research literature on computing identity within the experiences of women and minoritized undergraduate students in computing. The research questions guiding this work are: (1) What research literature exists about computing identity?, (2) According to existing literature, what are the experiences of women and racially minoritized undergraduates in computing (e.g., persons who identify as Black, Hispanic/Latinx, Indigenous people)?, and (3) What theoretical frameworks are used to guide existing computing identity literature? Emergent themes include the need to focus on exposure to computing, persistence, career expectations, and engagement. While there is no consensus on a computer identity framework, there is research guided by social cognitive career theory, social identity theory, and practice theory. We conclude that computing identity, including its multiple conceptualizations, offers multiple opportunities for informing and broadening participation of minoritized populations in computing. Future research should include further conceptual exploration of computing identity. 
    more » « less
  4. With support from NSF Scholarships in Science, Technology, Engineering, and Mathematics (S-STEM), the Culturally Adaptive Pathway to Success (CAPS) program aims to build an inclusive pathway to accelerate the graduation for academically talented, low-income students in Engineering and Computer Science majors at [University Name], which traditionally serves the underrepresented and educationally disadvantaged minority students in the [City Name area]. CAPS focuses on progressively developing social and career competence in our students via three integrated interventions: (1) Mentor+, a relationally informed advising strategy that encourages students to see their academic work in relation to their families and communities; (2) peer cohorts, providing social support structure for students and enhancing their sense of belonging in engineering and computer science classrooms and beyond; and (3) professional development from faculty who have been trained in difference-education theory, so that they can support students with varying levels of understanding of the antecedents of college success. To ensure success of these interventions, the CAPS program places great emphasis on developing culturally responsive advisement methods and training faculty mentors to facilitate creating a culture of culturally adaptive advising. This paper presents the CAPS progress in the past two project years. In particular, we will share several changes that we have made after the first project year to improve several key components of the program - recruitment, cohort building, and mentor training. The program strengthened the recruitment by actively involving scholars and faculties in reaching out to students and successfully recruited more scholars for the second cohort (16 scholars) than the first cohort (12 scholars). Also, the program has initiated new activities for peer-mentoring and cohort gathering within each major. As continuous development of the mentor training, the program has added a training session focusing on various aspects of intersectionality as it relates to individual’s social identities, and how mentors can use these knowledge to better interact with mentees. In addition to these changes, we will also report findings on how the program impacted on scholars’ academic growth and mentors’ understanding about the culturally adaptive advisement to answer the CAPS research questions (a) how these interventions affect the development of social belonging and engineering identity of CAPS scholars, and (b) the impact of Mentor+ on academic resilience and progress to degree. The program conducted qualitative data collection and analysis via focus group meetings and interviews as well as quantitative data collection and analysis using academic records and surveys. Our findings will help enhance the CAPS program and establish a sustainable Scholars Support Program at the university, which can be implemented with scholarships funded by other sources, and which can be transferred to similar culturally diverse institutions to increase success for students who have socio-economic challenges. 
    more » « less
  5. Need/Motivation (e.g., goals, gaps in knowledge) The ESTEEM implemented a STEM building capacity project through students’ early access to a sustainable and innovative STEM Stepping Stones, called Micro-Internships (MI). The goal is to reap key benefits of a full-length internship and undergraduate research experiences in an abbreviated format, including access, success, degree completion, transfer, and recruiting and retaining more Latinx and underrepresented students into the STEM workforce. The MIs are designed with the goals to provide opportunities for students at a community college and HSI, with authentic STEM research and applied learning experiences (ALE), support for appropriate STEM pathway/career, preparation and confidence to succeed in STEM and engage in summer long REUs, and with improved outcomes. The MI projects are accessible early to more students and build momentum to better overcome critical obstacles to success. The MIs are shorter, flexibly scheduled throughout the year, easily accessible, and participation in multiple MI is encouraged. ESTEEM also establishes a sustainable and collaborative model, working with partners from BSCS Science Education, for MI’s mentor, training, compliance, and building capacity, with shared values and practices to maximize the improvement of student outcomes. New Knowledge (e.g., hypothesis, research questions) Research indicates that REU/internship experiences can be particularly powerful for students from Latinx and underrepresented groups in STEM. However, those experiences are difficult to access for many HSI-community college students (85% of our students hold off-campus jobs), and lack of confidence is a barrier for a majority of our students. The gap between those who can and those who cannot is the “internship access gap.” This project is at a central California Community College (CCC) and HSI, the only affordable post-secondary option in a region serving a historically underrepresented population in STEM, including 75% Hispanic, and 87% have not completed college. MI is designed to reduce inequalities inherent in the internship paradigm by providing access to professional and research skills for those underserved students. The MI has been designed to reduce barriers by offering: shorter duration (25 contact hours); flexible timing (one week to once a week over many weeks); open access/large group; and proximal location (on-campus). MI mentors participate in week-long summer workshops and ongoing monthly community of practice with the goal of co-constructing a shared vision, engaging in conversations about pedagogy and learning, and sustaining the MI program going forward. Approach (e.g., objectives/specific aims, research methodologies, and analysis) Research Question and Methodology: We want to know: How does participation in a micro-internship affect students’ interest and confidence to pursue STEM? We used a mixed-methods design triangulating quantitative Likert-style survey data with interpretive coding of open-responses to reveal themes in students’ motivations, attitudes toward STEM, and confidence. Participants: The study sampled students enrolled either part-time or full-time at the community college. Although each MI was classified within STEM, they were open to any interested student in any major. Demographically, participants self-identified as 70% Hispanic/Latinx, 13% Mixed-Race, and 42 female. Instrument: Student surveys were developed from two previously validated instruments that examine the impact of the MI intervention on student interest in STEM careers and pursuing internships/REUs. Also, the pre- and post (every e months to assess longitudinal outcomes) -surveys included relevant open response prompts. The surveys collected students’ demographics; interest, confidence, and motivation in pursuing a career in STEM; perceived obstacles; and past experiences with internships and MIs. 171 students responded to the pre-survey at the time of submission. Outcomes (e.g., preliminary findings, accomplishments to date) Because we just finished year 1, we lack at this time longitudinal data to reveal if student confidence is maintained over time and whether or not students are more likely to (i) enroll in more internships, (ii) transfer to a four-year university, or (iii) shorten the time it takes for degree attainment. For short term outcomes, students significantly Increased their confidence to continue pursuing opportunities to develop within the STEM pipeline, including full-length internships, completing STEM degrees, and applying for jobs in STEM. For example, using a 2-tailed t-test we compared means before and after the MI experience. 15 out of 16 questions that showed improvement in scores were related to student confidence to pursue STEM or perceived enjoyment of a STEM career. Finding from the free-response questions, showed that the majority of students reported enrolling in the MI to gain knowledge and experience. After the MI, 66% of students reported having gained valuable knowledge and experience, and 35% of students spoke about gaining confidence and/or momentum to pursue STEM as a career. Broader Impacts (e.g., the participation of underrepresented minorities in STEM; development of a diverse STEM workforce, enhanced infrastructure for research and education) The ESTEEM project has the potential for a transformational impact on STEM undergraduate education’s access and success for underrepresented and Latinx community college students, as well as for STEM capacity building at Hartnell College, a CCC and HSI, for students, faculty, professionals, and processes that foster research in STEM and education. Through sharing and transfer abilities of the ESTEEM model to similar institutions, the project has the potential to change the way students are served at an early and critical stage of their higher education experience at CCC, where one in every five community college student in the nation attends a CCC, over 67% of CCC students identify themselves with ethnic backgrounds that are not White, and 40 to 50% of University of California and California State University graduates in STEM started at a CCC, thus making it a key leverage point for recruiting and retaining a more diverse STEM workforce. 
    more » « less