skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Large infrequent rain events dominate the hydroclimate of Rapa Nui (Easter Island)
Abstract The history of the Polynesian civilization on Rapa Nui (Easter Island) over the Common Era has come to exemplify the fragile relationship humans have with their environment. Social dynamics, deforestation, land degradation, and climatic shifts have all been proposed as important parts of the settlement history and societal transformations on Rapa Nui. Furthermore, climate dynamics of the Southeast Pacific have major global implications. While the wetlands of Rapa Nui contain critical sedimentological archives for reconstructing past hydrological change on the island, connections between the island’s hydroclimate and fundamental aspects of regional climatology are poorly understood. Here we present a hydroclimatology of Rapa Nui showing that there is a clear seasonal cycle of precipitation, with wet months receiving almost twice as much precipitation as dry months. This seasonal cycle can be explained by the seasonal shifts in the location and strength of the climatological south Pacific subtropical anticyclone. For interannual precipitation variability, we find that the occurrence of infrequent, large rain events explains 92% of the variance of the observed annual mean precipitation time series. Approximately one third (33%) of these events are associated with atmospheric rivers, 21% are associated with classic cold-front synoptic systems, and the remainder are characterized by cut-off lows and other synoptic-scale storm systems. As a group, these large rain events are most strongly controlled by the longitudinal position of the south Pacific subtropical anticyclone. The longitudinal location of this anticyclone explains 21% of the variance in the frequency of large rain events, while the remaining variance is left unexplained by any other major atmosphere-ocean dynamics. We find that over the observational era there appears to be no linear relationship between the number of large rain events and any other major climate phenomena. With the south Pacific subtropical anticyclone projected to strengthen and expand westward under global warming, our results imply that Rapa Nui will experience an increase in the number of dry years in the future.  more » « less
Award ID(s):
1805490 1743738
PAR ID:
10368086
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Climate Dynamics
Volume:
59
Issue:
1-2
ISSN:
0930-7575
Page Range / eLocation ID:
p. 595-608
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Submarine groundwater discharge (SGD) is an important component of many coastal environments and hydrologic processes, providing sources of nutrients to marine ecosystems, and potentially, an important source of fresh water for human populations. Here, we use a combination of unpiloted aerial systems (UAS) thermal infrared (TIR) imaging and salinity measurements to characterize SGD on the remote East Polynesian island of Rapa Nui (Easter Island, Chile). Previous research has shown that coastal freshwater seeps are abundant on Rapa Nui and strongly associated with the locations of ancient settlement sites. We currently lack, however, information on the differential magnitude or quality of these sources of fresh water. Our UAS-based TIR results from four locations on Rapa Nui suggest that locations of variably-sized SGD plumes are associated with many ancient settlement sites on the island and that these water sources are resilient to drought events. These findings support previous work indicating that ancient Rapa Nui communities responded to the inherent and climate-induced hydrological challenges of the island by focusing on these abundant and resilient freshwater sources. Our results highlight the efficacy of using UAS-based TIR for detecting relatively small SGD locations and provide key insights on the potential uses of these water sources for past and current Rapa Nui communities. 
    more » « less
  2. null (Ed.)
    The history of Rapa Nui (Easter Island) has long been framed as a parable for how societies can fail catastrophically due to the selfish actions of individuals and a failure to wisely manage common-pool resources. While originating in the interpretations made by 18th-century visitors to the island, 20th-century scholars recast this narrative as a “tragedy of the commons,” assuming that past populations were unsustainable and selfishly overexploited the limited resources on the island. This narrative, however, is now at odds with a range of archaeological, ethnohistoric, and environmental evidence. Here, we argue that while Rapa Nui did experience large-scale deforestation and ecological changes, these must be contextualized given past land-use practices on the island. We provide a synthesis of this evidence, showing that Rapa Nui populations were sustainable and avoided a tragedy of the commons through a variety of community practices. We discuss this evidence in the context of Elinor Ostrom’s “core design principles” for sustainable communities and argue that Rapa Nui provides a model for long-term sustainability. 
    more » « less
  3. null (Ed.)
    Abstract Although significant improvements have been made to the prediction and understanding of extreme precipitation events in recent decades, there is still much to learn about these impactful events on the subseasonal time scale. This study focuses on identifying synoptic patterns and precursors ahead of an extreme precipitation event over the contiguous United States (CONUS). First, we provide a robust definition for 14-day “extreme precipitation events” and partition the CONUS into six different geographic regions to compare and contrast the synoptic patterns associated with events in those regions. Then, several atmospheric variables from ERA-Interim (e.g., geopotential height and zonal winds) are composited to understand the evolution of the atmospheric state before and during a 14-day extreme precipitation event. Common synoptic signals seen during events include significant zonally oriented trough–ridge patterns, an energized subtropical jet stream, and enhanced moisture transport into the affected area. Also, atmospheric-river activity increases in the specific region during these events. Modes of climate variability and lagged composites are then investigated for their potential use in lead-time prediction. Key findings include synoptic-scale anomalies in the North Pacific Ocean and regional connections to modes such as the Pacific–North American pattern and the North Pacific Oscillation. Taken together, our results represent a significant step forward in understanding the evolution of 14-day extreme precipitation events for potential damage and casualty mitigation. 
    more » « less
  4. Although significant improvements have been made to the prediction and understanding of extreme precipitation events in recent decades, there is still much to learn about these impactful events on the subseasonal time scale. This study focuses on identifying synoptic patterns and precursors ahead of an extreme precipitation event over the contiguous United States (CONUS). First, we provide a robust definition for 14-day “extreme precipitation events” and partition the CONUS into six different geographic regions to compare and contrast the synoptic patterns associated with events in those regions. Then, several atmospheric variables from ERA-Interim (e.g., geopotential height and zonal winds) are composited to understand the evolution of the atmospheric state before and during a 14-day extreme precipitation event. Common synoptic signals seen during events include significant zonally oriented trough–ridge patterns, an energized subtropical jet stream, and enhanced moisture transport into the affected area. Also, atmospheric-river activity increases in the specific region during these events. Modes of climate variability and lagged composites are then investigated for their potential use in lead-time prediction. Key findings include synoptic-scale anomalies in the North Pacific Ocean and regional connections to modes such as the Pacific–North American pattern and the North Pacific Oscillation. Taken together, our results represent a significant step forward in understanding the evolution of 14-day extreme precipitation events for potential damage and casualty mitigation. 
    more » « less
  5. Abstract The project captured a subset of the hydrological cycle for the tropical island of O'ahu, linking precipitation to groundwater recharge and aquifer storage. We determined seasonal storm events contributed more to aquifer recharge than year‐round baseline orographic trade wind rainfall. Hydrogen and oxygen isotope values from an island‐wide rain collector network with 20 locations deployed for 16 months and sampled at 3‐month intervals were used to create the first local meteoric water line for O'ahu. Isotopic measurements were influenced by the amount effect, seasonality, storm type, and La Niña, though little elevation control was noted. Certain groundwater compositions from legacy data showed a strong similarity with collected precipitation from our stations. The majority of these significant relationships were between wet season precipitation and groundwater. A high number of moderate and heavy rainfall days during the dry season, large percentage of event‐based rainfall, and wind directions outside of the typical NE trade wind direction were characteristics of the 2017–2018 wet season. This indicates that the majority of wet season precipitation is from event‐based storms rather than typical trade wind weather. The deuterium‐excess values provided the strongest evidence of a relationship between groundwater and different precipitation sources, indicating that this may be a useful metric for determining the extent of recharge from different rain events and systems. 
    more » « less