3D printing of polymers is accomplished easily with thermoplastics as the extruded hot melt solidifies rapidly during the printing process. Printing with liquid polymer precursors is more challenging due to their longer curing times. One curable liquid polymer of specific interest is polydimethylsiloxane (PDMS). This study demonstrates a new efficient technique for 3D printing with PDMS by using a capillary suspension ink containing PDMS in the form of both precured microbeads and uncured liquid precursor, dispersed in water as continuous medium. The PDMS microbeads are held together in thixotropic granular paste by capillary attraction induced by the liquid precursor. These capillary suspensions possess high storage moduli and yield stresses that are needed for direct ink writing. They could be 3D printed and cured both in air and under water. The resulting PDMS structures are remarkably elastic, flexible, and extensible. As the ink is made of porous, biocompatible silicone that can be printed directly inside aqueous medium, it can be used in 3D printed biomedical products, or in applications such as direct printing of bioscaffolds on live tissue. This study demonstrates a number of examples using the high softness, elasticity, and resilience of these 3D printed structures.
Nanoparticle 3D printing and sintering is a promising method to achieve freeform interconnects on compliant substrates for applications such as soft robotics and wearable healthcare devices. However, previous strategies to sinter metallic nanoparticles while preserving the soft polymer substrate are rife with problems such as cracking and low conductivity of the metallic features. In this paper, the mechanisms of cracking in nanoparticle‐based 3D printed and sintered stretchable interconnects are identified and architecture and processing strategies are demonstrated to achieve crack‐free interconnects fully embedded in thin (<100 μm in thickness) stretchable polydimethylsiloxane (PDMS) with external connectivity. Capillary forces between nanoparticles developed through rapid solvent evaporation in the colloidal ink is hypothesized to initiate cracking during drying. Additionally, the presence of oxygen promotes the removal of organic surfactants and binders in the nanoparticle ink which increases nanoparticle agglomeration, grain growth, and subsequently conductivity. An experimental step‐wise variation of the thermal/atmospheric process conditions supports this hypothesis and shows that the presence of air during a low temperature drying step reduces the capillary stress to produce crack‐free interconnects with high conductivities (up to 56% of bulk metal) while having an excellent compatibility with the underlying polymer materials. Finally, stretchable interconnects fully‐encapsulated in PDMS polymer, with 3D pillar architectures for external connectivity are demonstrated, thus also solving an important “last‐mile” problem in the packaging of stretchable electronics.
more » « less- PAR ID:
- 10368118
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials Technologies
- Volume:
- 7
- Issue:
- 12
- ISSN:
- 2365-709X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Multi‐layer electrical interconnects are critical for the development of integrated soft wearable electronic systems, in which functional devices from different layers need to be connected together by vertical interconnects. In this work, electrohydrodynamic (EHD) printing technology is studied to achieve multi‐layer flexible and stretchable electronics by direct printing vertical interconnects as vertical interconnect accesses (VIAs) using a low‐melting‐point metal alloy. The EHD printed metallic vertical interconnection represents a promising way for the direct fabrication of multilayer integrated electronics with metallic conductivity and excellent flexibility and stretchability. By controlling the printing conditions, vertical interconnects that can bridge different heights can be fabricated. To achieve reliable VIA connections under bending and stretching conditions, an epoxy protective structure is printed around the VIA interconnects to form a core‐shell structure. A stable electrical response is achieved under hundreds of bending cycles and during stretching/releasing cycles in a large range of tensile strain (0–40%) for the printed conductors with VIA interconnects. A few multi‐layer devices, including a multiple layer heater, and a pressure‐based touch panel are fabricated to demonstrate the capability of the EHD printing for the direct fabrication of vertical metallic VIA interconnects for flexible and stretchable devices.
-
Abstract Current stretchable conductors, often composed of elastomeric composites infused with rigid conductive fillers, suffer from limited stretchability and durability, and declined conductivity with stretching. These limitations hinder their potential applications as essential components such as interconnects, sensors, and actuators in stretchable electronics and soft machines. In this context, an innovative elastomeric composite that incorporates a 3D network of liquid metal (LM), offering exceptional stretchability, durability, and conductivity, is introduced. The mechanics model elucidates how the interconnected 3DLM architecture imparts softness and stretchability to the composites, allowing them to withstand tensile strains of up to 500% without rupture. The relatively low surface‐to‐volume ratio of the 3DLM network limits the reforming of the oxide layer during cyclic stretch, thereby contributing to low permanent strain and enhanced durability. Additionally, the 3D architecture facilitates crack blunting and stress delocalization, elevating fracture resistance, while simultaneously establishing continuous conductive pathways that result in high conductivity. Notably, the conductivity of the 3DLM composite increases with strain during substantial stretching, highlighting its strain‐enhanced conductivity. In comparison to other LM‐based composites featuring 0D LM droplets, the 3DLM composite stands out with superior properties.
-
Bioelectronic devices and components made from soft, polymer-based and hybrid electronic materials form natural interfaces with the human body. Advances in the molecular design of stretchable dielectric, conducting and semiconducting polymers, as well as their composites with various metallic and inorganic nanoscale or microscale materials, have led to more unobtrusive and conformal interfaces with tissues and organs. Nonetheless, technical challenges associated with functional performance, stability and reliability of integrated soft bioelectronic systems still remain. This Review discusses recent progress in biomedical applications of soft organic and hybrid electronic materials, device components and integrated systems for addressing these challenges. We first discuss strategies for achieving soft and stretchable devices, highlighting molecular and materials design concepts for incorporating intrinsically stretchable functional materials. We next describe design strategies and considerations on wearable devices for on-skin sensing and prostheses. Moving beneath the skin, we discuss advances in implantable devices enabled by materials and integrated devices with tissue-like mechanical properties. Finally, we summarize strategies used to build standalone integrated systems and whole-body networks to integrate wearable and implantable bioelectronic devices with other essential components, including wireless communication units, power sources, interconnects and encapsulation.more » « less
-
Flexible electronics on low-temperature substrates like paper are very appealing for their use in disposable and biocompatible electronic applications and areas like healthcare, wearables, and consumer electronics. Plasma-jet printing uses a dielectric barrier discharge plasma to focus aerosolized nanoparticles onto a target substrate. The same plasma can be used to change the properties of the printed material and even sinter in situ . In this work, we demonstrate one-step deposition of gold structures onto flexible and low-temperature substrates without the need for thermal or photonic post-processing. We also explore the plasma effect on the deposition of the gold nanoparticle ink. The plasma voltage is optimized for the sintering of the gold nanoparticles, and a simple procedure for manufacturing traces with increased adhesion and conductivity is presented, with a peak conductivity of 6.2 x10 5 S/m. PJP-printed gold LED interconnects and microheaters on flexible substrates are developed to demonstrate the potential of this single-step sintered deposition of conductive traces on low-temperature substrates.more » « less