skip to main content


Title: High‐Conductivity Crack‐Free 3D Electrical Interconnects Directly Printed on Soft PDMS Substrates
Abstract

Nanoparticle 3D printing and sintering is a promising method to achieve freeform interconnects on compliant substrates for applications such as soft robotics and wearable healthcare devices. However, previous strategies to sinter metallic nanoparticles while preserving the soft polymer substrate are rife with problems such as cracking and low conductivity of the metallic features. In this paper, the mechanisms of cracking in nanoparticle‐based 3D printed and sintered stretchable interconnects are identified and architecture and processing strategies are demonstrated to achieve crack‐free interconnects fully embedded in thin (<100 μm in thickness) stretchable polydimethylsiloxane (PDMS) with external connectivity. Capillary forces between nanoparticles developed through rapid solvent evaporation in the colloidal ink is hypothesized to initiate cracking during drying. Additionally, the presence of oxygen promotes the removal of organic surfactants and binders in the nanoparticle ink which increases nanoparticle agglomeration, grain growth, and subsequently conductivity. An experimental step‐wise variation of the thermal/atmospheric process conditions supports this hypothesis and shows that the presence of air during a low temperature drying step reduces the capillary stress to produce crack‐free interconnects with high conductivities (up to 56% of bulk metal) while having an excellent compatibility with the underlying polymer materials. Finally, stretchable interconnects fully‐encapsulated in PDMS polymer, with 3D pillar architectures for external connectivity are demonstrated, thus also solving an important “last‐mile” problem in the packaging of stretchable electronics.

 
more » « less
NSF-PAR ID:
10368118
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials Technologies
Volume:
7
Issue:
12
ISSN:
2365-709X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Multi‐layer electrical interconnects are critical for the development of integrated soft wearable electronic systems, in which functional devices from different layers need to be connected together by vertical interconnects. In this work, electrohydrodynamic (EHD) printing technology is studied to achieve multi‐layer flexible and stretchable electronics by direct printing vertical interconnects as vertical interconnect accesses (VIAs) using a low‐melting‐point metal alloy. The EHD printed metallic vertical interconnection represents a promising way for the direct fabrication of multilayer integrated electronics with metallic conductivity and excellent flexibility and stretchability. By controlling the printing conditions, vertical interconnects that can bridge different heights can be fabricated. To achieve reliable VIA connections under bending and stretching conditions, an epoxy protective structure is printed around the VIA interconnects to form a core‐shell structure. A stable electrical response is achieved under hundreds of bending cycles and during stretching/releasing cycles in a large range of tensile strain (0–40%) for the printed conductors with VIA interconnects. A few multi‐layer devices, including a multiple layer heater, and a pressure‐based touch panel are fabricated to demonstrate the capability of the EHD printing for the direct fabrication of vertical metallic VIA interconnects for flexible and stretchable devices.

     
    more » « less
  2. Abstract

    Current stretchable conductors, often composed of elastomeric composites infused with rigid conductive fillers, suffer from limited stretchability and durability, and declined conductivity with stretching. These limitations hinder their potential applications as essential components such as interconnects, sensors, and actuators in stretchable electronics and soft machines. In this context, an innovative elastomeric composite that incorporates a 3D network of liquid metal (LM), offering exceptional stretchability, durability, and conductivity, is introduced. The mechanics model elucidates how the interconnected 3DLM architecture imparts softness and stretchability to the composites, allowing them to withstand tensile strains of up to 500% without rupture. The relatively low surface‐to‐volume ratio of the 3DLM network limits the reforming of the oxide layer during cyclic stretch, thereby contributing to low permanent strain and enhanced durability. Additionally, the 3D architecture facilitates crack blunting and stress delocalization, elevating fracture resistance, while simultaneously establishing continuous conductive pathways that result in high conductivity. Notably, the conductivity of the 3DLM composite increases with strain during substantial stretching, highlighting its strain‐enhanced conductivity. In comparison to other LM‐based composites featuring 0D LM droplets, the 3DLM composite stands out with superior properties.

     
    more » « less
  3. Abstract

    2D organic conjugated polymer nanofilm has shown promising potential applications in organic solar cells and flexible electronics due to its tunable electronic and mechanical properties. However, its multifunctionality is largely hindered by weak mechanical performances. Here, a new strategy of harnessing buckling‐driven delamination is proposed for achieving highly stretchable, free‐standing organic nanosheets with largely improved multifunctionality in mechanical, electrical, and wetting properties. A model system of organic conjugated polymeric (P3BT/C60) nanosheets on prestrained elastomers is fabricated through both spin‐coating and transfer‐printing methods. It is found that the free‐standing nanosheet exhibits both superior mechanical and electrical properties with two times higher in fracture strength, and one order of magnitude higher in electrical conductivity than the spin‐coated nanofilm. Compared to wrinkled spin‐coated nanofilms with orthogonal cracks, the crack‐free, buckle‐delaminated free‐standing nanosheet shows not only stable electrical properties with high stretchability but also a large enhancement in both wetting anisotropy and parallel contact angle due to its higher‐aspect‐ratio features. Lastly, measuring the nanofilm's fracture strength and interfacial toughness from the metrology of cracking and buckle‐delaminated micropatterns is demonstrated. It is shown that such metrology‐based approaches can be applied to various nanofilm–substrate systems for thin film and interfacial mechanical properties measurement.

     
    more » « less
  4. Abstract

    Covalent adaptable network (CAN) polymers doped with conductive nanoparticles are an ideal candidate to create reshapeable, rehealable, and fully recyclable electronics. On the other hand, 3D printing as a deterministic manufacturing method has a significant potential to fabricate electronics with low cost and high design freedom. In this paper, we incorporate a conductive composite consisting of polyimine CAN and multi-wall carbon nanotubes into direct-ink-writing 3D printing to create polymeric sensors with outstanding reshaping, repairing, and recycling capabilities. The developed printable ink exhibits good printability, conductivity, and recyclability. The conductivity of printed polyimine composites is investigated at different temperatures and deformation strain levels. Their shape-reforming and Joule heating-induced interfacial welding effects are demonstrated and characterized. Finally, a temperature sensor is 3D printed with defined patterns of conductive pathways, which can be easily mounted onto 3D surfaces, repaired after damage, and recycled using solvents. The sensing capability of printed sensors is maintained after the repairing and recycling. Overall, the 3D printed reshapeable, rehealable, and recyclable sensors possess complex geometry and extend service life, which assist in the development of polymer-based electronics toward broad and sustainable applications.

     
    more » « less
  5. Abstract

    The macro-porous ceramics has promising durability and thermal insulation performances. A cost-effective and scalable additive manufacturing technique for the fabrication of macro-porous ceramics, with a facile approach to control the printed porosity is reported in the paper. Several ceramic inks were prepared, the foaming agent was used to generate gaseous bubbles in the ink, followed by the direct ink writing and the ambient-pressure and room-temperature drying to create the three-dimensional geometries. The experimental studies were performed to optimize the printing quality. A set of studies revealed the optimal printing process parameters for printing the foamed ceramic ink with a high spatial resolution and fine surface quality. Varying the concentration of the foaming agent enabled the controllability of the structural porosity. The maximum porosity can reach 85%, with a crack-free internal porous structure. The tensile tests showed that the printed macro-porous ceramics have enhanced durability with the addition of fiber. With a high-fidelity 3D printing process and precise control of the porosity, the printed samples exhibited a low thermal conductivity and high mechanical strength.

     
    more » « less