Virtual and immersive virtual reality, VR and iVR, provide flexible and engaging learning opportunities, such as virtual field trips (VFTs). Despite its growing popularity for education, understanding how iVR compared to non-immersive media influences learning is still challenged by mixed empirical results and a lack of longitudinal research. This study addresses these issues through an experiment in which undergraduate geoscience students attended two temporally separated VFT sessions through desktop virtual reality (dVR) or iVR, with their learning experience and outcomes measured after each session. Our results show higher levels of enjoyment and satisfaction as well as a stronger sense of spatial presence in iVR students in both VFTs compared to dVR students, but no improvement in learning outcomes in iVR compared to dVR. More importantly, we found that there exists a critical interaction between VR condition and repeated participation in VFTs indicating that longitudinal exposure to VFTs improves knowledge performance more when learning in iVR than through dVR. These results suggest that repeated use of iVR may be beneficial in sustaining students’ emotional engagement and compensating the initial deficiency in their objective learning outcomes compared to other less immersive technologies.
more » « less- Award ID(s):
- 1946391
- PAR ID:
- 10368152
- Publisher / Repository:
- SAGE Publications
- Date Published:
- Journal Name:
- Journal of Educational Computing Research
- Volume:
- 60
- Issue:
- 4
- ISSN:
- 0735-6331
- Format(s):
- Medium: X Size: p. 1008-1034
- Size(s):
- p. 1008-1034
- Sponsoring Org:
- National Science Foundation
More Like this
-
This study aimed to compare the effects of immersive virtual reality (IVR) videos and 2D educational videos on cognitive (i.e. conceptual knowledge) and non-cognitive (i.e. self-efficacy) learning outcomes. Fifty-three students from an all-girls middle school learned about humans’ impact on the ocean through either IVR videos, using a virtual reality (VR) headset, or through 2D videos, using a computer monitor. Results replicate previous findings suggesting that conceptual knowledge gains between IVR and desktop learning experiences is not significant. Also, results show that participants who watched IVR videos reported higher self-efficacy scores and expressed higher feelings of presence than participants who watched the same videos using a computer monitor. Finally, further analyses revealed that the feeling of presence mediated both cognitive and non-cognitive learning outcomes.more » « less
-
Modern developments in autonomous chemometric machine learning technology strive to relinquish the need for human intervention. However, such algorithms developed and used in chemometric multivariate calibration and classification applications exclude crucial expert insight when difficult and safety-critical analysis situations arise, e.g., spectral-based medical decisions such as noninvasively determining if a biopsy is cancerous. The prediction accuracy and interpolation capabilities of autonomous methods for new samples depend on the quality and scope of their training (calibration) data. Specifically, analysis patterns within target data not captured by the training data will produce undesirable outcomes. Alternatively, using an immersive analytic approach allows insertion of human expert judgment at key machine learning algorithm junctures forming a sensemaking process performed in cooperation with a computer. The capacity of immersive virtual reality (IVR) environments to render human comprehensible three-dimensional space simulating real-world encounters, suggests its suitability as a hybrid immersive human–computer interface for data analysis tasks. Using IVR maximizes human senses to capitalize on our instinctual perception of the physical environment, thereby leveraging our innate ability to recognize patterns and visualize thresholds crucial to reducing erroneous outcomes. In this first use of IVR as an immersive analytic tool for spectral data, we examine an integrated IVR real-time model selection algorithm for a recent model updating method that adapts a model from the original calibration domain to predict samples from shifted target domains. Using near-infrared data, analyte prediction errors from IVR-selected models are reduced compared to errors using an established autonomous model selection approach. Results demonstrate the viability of IVR as a human data analysis interface for spectral data analysis including classification problems.
-
Advances in immersive virtual reality (IVR) are creating more computer-supported collaborative learning environments, but there is little research explicating how collaboration in IVR impacts learning. We ran a quasi-experimental study with 80 participants targeting ocean literacy learning, varying the manner in which participants interacted in IVR to investigate how the design of collaborative IVR experiences influences learning. Results are discussed through the lens of collaborative cognitive learning theory. Participants that collaborated to actively build a new environment in IVR scored higher for learning than participants who only watched an instructional guide’s avatar, or participants who watched the guide’s avatar and subsequently discussed what they learned while in IVR. Moreover, feeling negative emotions, feeling active in the environment, and feeling bonded to the group members negatively correlated with learning. Results shed light on the mechanisms behind how collaborative tasks in IVR can support learning.more » « less
-
The significance of practical experience and visualization in the fluid power discipline, highly tied to students’ success, requires integrating immersive pedagogical tools for enhanced course delivery, offering real-life industry simulation. This study investigates the impact of using virtual reality (VR) technology as an instructional tool on the learning and engagement of 48 mechanical engineering technology (MET) students registered in the MET: 230 Fluid Power course at Purdue University. An interactive VR module on hydraulic grippers was developed utilizing the constructivist learning theory for MET: 230 labs, enabling MET students to explore light- and heavy-duty gripper designs and operation through assembly, disassembly, and testing in a virtual construction environment. A survey consisting of a Likert scale and short-answer questions was designed based on the study’s objective to evaluate the students’ engagement and perceived attitude toward the module. Statistical and natural language processing (NLP) analyses were conducted on the students’ responses. The statistical analysis results revealed that 97% of the students expressed increased excitement, over 90% reported higher engagement, and 87% found the VR lab realistic and practical. The NLP analysis highlighted positive themes such as “engagement”, “valuable experience”, “hands-on learning”, and “understanding”, with over 80% of students endorsing these sentiments. These findings will contribute to future efforts aimed at improving fluid power learning through immersive digital reality technologies, while also exploring alternative approaches for individuals encountering challenges with such technologies.
-
Virtual reality (VR) has a high potential to facilitate education. However, the design of many VR learning applications was criticized for lacking the guidance of explicit and appropriate learning theories. To advance the use of VR in effective instruction, this study proposed a model that extended the cognitive-affective theory of learning with media (CATLM) into a VR learning context and evaluated this model using a structural equation modeling (SEM) approach. Undergraduate students ( n = 77) learned about the solar system in a VR environment over three sessions. Overall, the results supported the core principles and assumptions of CATLM in a VR context (CATLM-VR). In addition, the CATLM-VR model illustrated how immersive VR may impact learning. Specifically, immersion had an overall positive impact on user experience and motivation. However, the impact of immersion on cognitive load was uncertain, and that uncertainty made the final learning outcomes less predictable. Enhancing students’ motivation and cognitive engagement may more directly increase learning achievement than increasing the level of immersion and may be more universally applicable in VR instruction.more » « less