skip to main content


Title: Rapid biosensor development using plant hormone receptors as reprogrammable scaffolds
Abstract

A general method to generate biosensors for user-defined molecules could provide detection tools for a wide range of biological applications. Here, we describe an approach for the rapid engineering of biosensors using PYR1 (Pyrabactin Resistance 1), a plant abscisic acid (ABA) receptor with a malleable ligand-binding pocket and a requirement for ligand-induced heterodimerization, which facilitates the construction of sense–response functions. We applied this platform to evolve 21 sensors with nanomolar to micromolar sensitivities for a range of small molecules, including structurally diverse natural and synthetic cannabinoids and several organophosphates. X-ray crystallography analysis revealed the mechanistic basis for new ligand recognition by an evolved cannabinoid receptor. We demonstrate that PYR1-derived receptors are readily ported to various ligand-responsive outputs, including enzyme-linked immunosorbent assay (ELISA)-like assays, luminescence by protein-fragment complementation and transcriptional circuits, all with picomolar to nanomolar sensitivity. PYR1 provides a scaffold for rapidly evolving new biosensors for diverse sense–response applications.

 
more » « less
Award ID(s):
2128287 2128246 2128016 1922642
NSF-PAR ID:
10368156
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Biotechnology
Volume:
40
Issue:
12
ISSN:
1087-0156
Page Range / eLocation ID:
p. 1855-1861
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Plants sense abscisic acid (ABA) using chemical-induced dimerization (CID) modules, including the receptor PYR1 and HAB1, a phosphatase inhibited by ligand-activated PYR1. This system is unique because of the relative ease with which ligand recognition can be reprogrammed. To expand the PYR1 system, we designed an orthogonal ‘*’ module, which harbors a dimer interface salt bridge; X-ray crystallographic, biochemical and in vivo analyses confirm its orthogonality. We used this module to create PYR1*MANDI/HAB1* and PYR1*AZIN/HAB1*, which possess nanomolar sensitivities to their activating ligands mandipropamid and azinphos-ethyl. Experiments inArabidopsis thalianaandSaccharomyces cerevisiaedemonstrate the sensitive detection of banned organophosphate contaminants using living biosensors and the construction of multi-input/output genetic circuits. Our new modules enable ligand-programmable multi-channel CID systems for plant and eukaryotic synthetic biology that can empower new plant-based and microbe-based sensing modalities.

     
    more » « less
  2. Chemical-induced dimerization (CID) modules enable users to implement ligand-controlled cellular and biochemical functions for a number of problems in basic and applied biology. A special class of CID modules occur naturally by plants involving a hormone receptor which binds hormone, triggering a conformational change in the receptor which enables recognition by a second binding protein. Two recent reports show that such hormone receptors can be engineered to sense dozens of structurally diverse compounds. As a closed form model for molecular ratchets would be of immense utility in forward engineering of biological systems, here we have developed a closed form model for these distinct CID modules. These modules, which we call molecular ratchets, are distinct from more common CID modules called molecular glues in that they engage in saturable binding kinetics and are well characterized by a Hill equation. A defining characteristic of molecular ratchets is that the sensitivity of the response can be tuned by increasing the molar ratio between the hormone receptor and binding protein. Thus, the same molecular ratchet can have a picomolar or micromolar EC50 depending on the concentration of the different receptor and binding proteins. Closed form models are derived for a base elementary reaction rate model, for ligand-independent complexation of receptor and binding protein, and for homodimerization of the hormone receptor. Useful governing equations for a variety of in vitro and in vivo applications are derived, including ELISA-like microplate assays, transcriptional activation in prokaryotes and eukaryotes, and ligand-induced split protein complementation. 
    more » « less
  3. Abstract Key Points

    Axon guidance ligand and receptor expression often persist into adulthood in neuronal and non‐neuronal tissues alike.

    Recent work in genetic model organisms highlights the diverse roles of guidance factors in adult tissues.

    Guidance factors are required intrinsically in a variety of adult tissues but can also regulate tissue function indirectly via functions in the nervous and vascular systems.

    Studies outside of the nervous system are likely to enhance our understanding of these diverse siganling molecules and could suggest novel signaling modalities in the nervous system.

     
    more » « less
  4. Abstract

    Electrochemical biosensors based on structure‐switching aptamers offer many advantages because they can operate directly in complex samples and offer the potential to integrate with miniaturized electronics. Unfortunately, these biosensors often suffer from cross‐reactivity problems when measuring a target in samples containing other chemically similar molecules, such as precursors or metabolites. While some progress has been made in selecting highly specific aptamers, the discovery of these reagents remains slow and costly. In this work, a novel strategy is demonstrated to distinguish molecules with miniscule difference in chemical composition (such as a single hydroxyl group)—with cross reactive aptamer probes—by tuning the charge state of the surface on which the aptamer probes are immobilized. As an exemplar, it is shown that the strategy can distinguish between DOX and many structurally similar analytes, including its primary metabolite doxorubicinol (DOXol). Then the ability to accurately quantify mixtures of these two molecules based on their differential response to sensors with different surface‐charge properties is demonstrated. It is believed that this methodology is general and can be extended to a broad range of applications.

     
    more » « less
  5. Abstract Karrikins (KARs) are chemicals in smoke that can enhance germination of many plants. Lettuce (Lactuca sativa) cv. Grand Rapids germinates in response to nanomolar karrikinolide (KAR1). Lettuce is much less responsive to KAR2 or a mixture of synthetic strigolactone analogs, rac-GR24. We investigated the molecular basis of selective and sensitive KAR1 perception in lettuce. The lettuce genome contains two copies of KARRIKIN INSENSITIVE2 (KAI2), which in Arabidopsis (Arabidopsis thaliana) encodes a receptor that is required for KAR responses. LsKAI2b is more highly expressed than LsKAI2a in dry achenes and during early stages of imbibition. Through cross-species complementation assays in Arabidopsis, we found that an LsKAI2b transgene confers robust responses to KAR1, but LsKAI2a does not. Therefore, LsKAI2b likely mediates KAR1 responses in lettuce. We compared homology models of KAI2 proteins from lettuce and a fire-follower, whispering bells (Emmenanthe penduliflora). This identified pocket residues 96, 124, 139, and 161 as candidates that influence the ligand specificity of KAI2. Further support for the importance of these residues was found through a broader comparison of pocket residues among 281 KAI2 proteins from 184 asterid species. Almost all KAI2 proteins had either Tyr or Phe identity at position 124. Genes encoding Y124-type KAI2 are more broadly distributed in asterids than in F124-type KAI2. Substitutions at residues 96, 124, 139, and 161 in Arabidopsis KAI2 produced a broad array of responses to KAR1, KAR2, and rac-GR24. This suggests that the diverse ligand preferences observed among KAI2 proteins in plants could have evolved through relatively few mutations. 
    more » « less